Guo Ruixin, Zhu Hongtu, Chow Sy-Miin, Ibrahim Joseph G
Department of Biostatistics, University of North Carolina at Chapel Hill, USA.
Biometrics. 2012 Jun;68(2):567-77. doi: 10.1111/j.1541-0420.2012.01751.x. Epub 2012 Feb 29.
There has been great interest in developing nonlinear structural equation models and associated statistical inference procedures, including estimation and model selection methods. In this paper a general semiparametric structural equation model (SSEM) is developed in which the structural equation is composed of nonparametric functions of exogenous latent variables and fixed covariates on a set of latent endogenous variables. A basis representation is used to approximate these nonparametric functions in the structural equation and the Bayesian Lasso method coupled with a Markov Chain Monte Carlo (MCMC) algorithm is used for simultaneous estimation and model selection. The proposed method is illustrated using a simulation study and data from the Affective Dynamics and Individual Differences (ADID) study. Results demonstrate that our method can accurately estimate the unknown parameters and correctly identify the true underlying model.
人们对开发非线性结构方程模型及相关统计推断程序(包括估计和模型选择方法)有着浓厚的兴趣。本文开发了一种通用的半参数结构方程模型(SSEM),其中结构方程由一组潜在内生变量上的外生潜在变量和固定协变量的非参数函数组成。使用基表示来近似结构方程中的这些非参数函数,并将贝叶斯套索方法与马尔可夫链蒙特卡罗(MCMC)算法相结合用于同时估计和模型选择。通过模拟研究和情感动态与个体差异(ADID)研究的数据说明了所提出的方法。结果表明,我们的方法可以准确估计未知参数并正确识别真正的潜在模型。