Suppr超能文献

用于半参数结构方程模型的贝叶斯套索法

Bayesian lasso for semiparametric structural equation models.

作者信息

Guo Ruixin, Zhu Hongtu, Chow Sy-Miin, Ibrahim Joseph G

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, USA.

出版信息

Biometrics. 2012 Jun;68(2):567-77. doi: 10.1111/j.1541-0420.2012.01751.x. Epub 2012 Feb 29.

Abstract

There has been great interest in developing nonlinear structural equation models and associated statistical inference procedures, including estimation and model selection methods. In this paper a general semiparametric structural equation model (SSEM) is developed in which the structural equation is composed of nonparametric functions of exogenous latent variables and fixed covariates on a set of latent endogenous variables. A basis representation is used to approximate these nonparametric functions in the structural equation and the Bayesian Lasso method coupled with a Markov Chain Monte Carlo (MCMC) algorithm is used for simultaneous estimation and model selection. The proposed method is illustrated using a simulation study and data from the Affective Dynamics and Individual Differences (ADID) study. Results demonstrate that our method can accurately estimate the unknown parameters and correctly identify the true underlying model.

摘要

人们对开发非线性结构方程模型及相关统计推断程序(包括估计和模型选择方法)有着浓厚的兴趣。本文开发了一种通用的半参数结构方程模型(SSEM),其中结构方程由一组潜在内生变量上的外生潜在变量和固定协变量的非参数函数组成。使用基表示来近似结构方程中的这些非参数函数,并将贝叶斯套索方法与马尔可夫链蒙特卡罗(MCMC)算法相结合用于同时估计和模型选择。通过模拟研究和情感动态与个体差异(ADID)研究的数据说明了所提出的方法。结果表明,我们的方法可以准确估计未知参数并正确识别真正的潜在模型。

相似文献

1
Bayesian lasso for semiparametric structural equation models.
Biometrics. 2012 Jun;68(2):567-77. doi: 10.1111/j.1541-0420.2012.01751.x. Epub 2012 Feb 29.
2
Structure detection of semiparametric structural equation models with Bayesian adaptive group lasso.
Stat Med. 2015 Apr 30;34(9):1527-47. doi: 10.1002/sim.6410. Epub 2015 Jan 12.
3
Bayesian adaptive group lasso with semiparametric hidden Markov models.
Stat Med. 2019 Apr 30;38(9):1634-1650. doi: 10.1002/sim.8051. Epub 2018 Nov 28.
4
Latent variable models with nonparametric interaction effects of latent variables.
Stat Med. 2014 May 10;33(10):1723-37. doi: 10.1002/sim.6065. Epub 2013 Dec 15.
5
Bayesian semiparametric failure time models for multivariate censored data with latent variables.
Stat Med. 2018 Dec 10;37(28):4279-4297. doi: 10.1002/sim.7916. Epub 2018 Aug 13.
6
Bayesian analysis of transformation latent variable models with multivariate censored data.
Stat Methods Med Res. 2016 Oct;25(5):2337-2358. doi: 10.1177/0962280214522786. Epub 2014 Feb 17.
7
Bayesian quantile regression for censored data.
Biometrics. 2013 Sep;69(3):651-60. doi: 10.1111/biom.12053. Epub 2013 Jul 11.
8
Bayesian dynamic modeling of latent trait distributions.
Biostatistics. 2006 Oct;7(4):551-68. doi: 10.1093/biostatistics/kxj025. Epub 2006 Feb 17.
10
Locally adaptive function estimation for binary regression models.
Biom J. 2005 Apr;47(2):151-66. doi: 10.1002/bimj.200410095.

引用本文的文献

3
Pathway Lasso: Pathway Estimation and Selection with High-Dimensional Mediators.
Stat Interface. 2022;15(1):39-50. doi: 10.4310/21-sii673. Epub 2021 Aug 11.
5
Comparison of frequentist and Bayesian regularization in structural equation modeling.
Struct Equ Modeling. 2018;25(4):639-649. doi: 10.1080/10705511.2017.1410822. Epub 2018 Jan 16.
6
Bayesian adaptive group lasso with semiparametric hidden Markov models.
Stat Med. 2019 Apr 30;38(9):1634-1650. doi: 10.1002/sim.8051. Epub 2018 Nov 28.
7
9
A general non-linear multilevel structural equation mixture model.
Front Psychol. 2014 Jul 18;5:748. doi: 10.3389/fpsyg.2014.00748. eCollection 2014.

本文引用的文献

1
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
3
Opposite effect of negative and positive affect on stress procoagulant reactivity.
Physiol Behav. 2005 Sep 15;86(1-2):61-8. doi: 10.1016/j.physbeh.2005.06.005.
4
Statistical analysis of nonlinear structural equation models with continuous and polytomous data.
Br J Math Stat Psychol. 2000 Nov;53 ( Pt 2):209-32. doi: 10.1348/000711000159303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验