Feng Xiang-Nan, Wang Guo-Chang, Wang Yi-Fan, Song Xin-Yuan
Department of Statistics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
Stat Med. 2015 Apr 30;34(9):1527-47. doi: 10.1002/sim.6410. Epub 2015 Jan 12.
Structural equation models (SEMs) are widely recognized as the most important statistical tool for assessing the interrelationships among latent variables. This study develops a Bayesian adaptive group least absolute shrinkage and selection operator procedure to perform simultaneous model selection and estimation for semiparametric SEMs, wherein the structural equation is formulated using the additive nonparametric functions of observed and latent variables. We propose the use of basis expansions to approximate the unknown functions. By introducing adaptive penalties to the groups of basis expansions, the nonlinear, linear, or non-existent effects of observed and latent variables in the structural equation can be automatically detected. A simulation study demonstrates that the proposed method performs satisfactorily. This paper presents an application of revealing the observed and latent risk factors of diabetic kidney disease.
结构方程模型(SEMs)被广泛认为是评估潜在变量之间相互关系的最重要统计工具。本研究开发了一种贝叶斯自适应组最小绝对收缩和选择算子程序,用于对半参数结构方程模型进行同时模型选择和估计,其中结构方程是使用观测变量和潜在变量的加性非参数函数来构建的。我们建议使用基展开来近似未知函数。通过对基展开组引入自适应惩罚,可以自动检测结构方程中观测变量和潜在变量的非线性、线性或不存在的效应。一项模拟研究表明,所提出的方法表现令人满意。本文展示了该方法在揭示糖尿病肾病的观测和潜在风险因素方面的应用。