Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong.
Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.
Stat Med. 2019 Apr 30;38(9):1634-1650. doi: 10.1002/sim.8051. Epub 2018 Nov 28.
This paper presents a Bayesian adaptive group least absolute shrinkage and selection operator method to conduct simultaneous model selection and estimation under semiparametric hidden Markov models. We specify the conditional regression model and the transition probability model in the hidden Markov model into additive nonparametric functions of covariates. A basis expansion is adopted to approximate the nonparametric functions. We introduce multivariate conditional Laplace priors to impose adaptive penalties on regression coefficients and different groups of basis expansions under the Bayesian framework. An efficient Markov chain Monte Carlo algorithm is then proposed to identify the nonexistent, constant, linear, and nonlinear forms of covariate effects in both conditional and transition models. The empirical performance of the proposed methodology is evaluated via simulation studies. We apply the proposed model to analyze a real data set that was collected from the Alzheimer's Disease Neuroimaging Initiative study. The analysis identifies important risk factors on cognitive decline and the transition from cognitive normal to Alzheimer's disease.
本文提出了一种贝叶斯自适应分组最小绝对收缩和选择算子方法,以便在半参数隐马尔可夫模型下进行同时的模型选择和估计。我们将隐马尔可夫模型中的条件回归模型和转移概率模型指定为协变量的加性非参数函数。采用基扩展来近似非参数函数。我们在贝叶斯框架下引入多元条件拉普拉斯先验,对回归系数和不同组的基扩展施加自适应惩罚。然后提出了一种有效的马尔可夫链蒙特卡罗算法,以识别条件和转移模型中协变量效应的不存在、常数、线性和非线性形式。通过模拟研究评估了所提出方法的经验性能。我们将所提出的模型应用于分析从阿尔茨海默病神经影像学倡议研究中收集的真实数据集。该分析确定了认知衰退和从认知正常到阿尔茨海默病的转变的重要风险因素。