Suppr超能文献

考虑个体间差异,利用数学专业大学生辍学研究的密集纵向数据预测个体情感状态的变化。

Forecasting Intra-individual Changes of Affective States Taking into Account Inter-individual Differences Using Intensive Longitudinal Data from a University Student Dropout Study in Math.

机构信息

Methods Center, University of Tübingen, Tübingen, Germany.

Methods Center, University of Tuebingen, Tübingen, Germany.

出版信息

Psychometrika. 2022 Jun;87(2):533-558. doi: 10.1007/s11336-022-09858-6. Epub 2022 Apr 2.

Abstract

The longitudinal process that leads to university student dropout in STEM subjects can be described by referring to (a) inter-individual differences (e.g., cognitive abilities) as well as (b) intra-individual changes (e.g., affective states), (c) (unobserved) heterogeneity of trajectories, and d) time-dependent variables. Large dynamic latent variable model frameworks for intensive longitudinal data (ILD) have been proposed which are (partially) capable of simultaneously separating the complex data structures (e.g., DLCA; Asparouhov et al. in Struct Equ Model 24:257-269, 2017; DSEM; Asparouhov et al. in Struct Equ Model 25:359-388, 2018; NDLC-SEM, Kelava and Brandt in Struct Equ Model 26:509-528, 2019). From a methodological perspective, forecasting in dynamic frameworks allowing for real-time inferences on latent or observed variables based on ongoing data collection has not been an extensive research topic. From a practical perspective, there has been no empirical study on student dropout in math that integrates ILD, dynamic frameworks, and forecasting of critical states of the individuals allowing for real-time interventions. In this paper, we show how Bayesian forecasting of multivariate intra-individual variables and time-dependent class membership of individuals (affective states) can be performed in these dynamic frameworks using a Forward Filtering Backward Sampling method. To illustrate our approach, we use an empirical example where we apply the proposed forecasting method to ILD from a large university student dropout study in math with multivariate observations collected over 50 measurement occasions from multiple students ([Formula: see text]). More specifically, we forecast emotions and behavior related to dropout. This allows us to predict emerging critical dynamic states (e.g., critical stress levels or pre-decisional states) 8 weeks before the actual dropout occurs.

摘要

导致大学生在 STEM 学科中辍学的纵向过程可以通过以下几个方面来描述:(a) 个体间差异(例如认知能力)以及 (b) 个体内变化(例如情感状态),(c) 轨迹的(未观察到的)异质性,以及 (d) 时变变量。已经提出了用于密集纵向数据(ILD)的大型动态潜在变量模型框架,这些框架(部分)能够同时分离复杂的数据结构(例如,DLCA;Asparouhov 等人,在 Struct Equ Model 24:257-269, 2017;DSEM;Asparouhov 等人,在 Struct Equ Model 25:359-388, 2018;NDLC-SEM,Kelava 和 Brandt,在 Struct Equ Model 26:509-528, 2019)。从方法论的角度来看,在允许基于正在进行的数据收集对潜在或观察变量进行实时推断的动态框架中进行预测并不是一个广泛的研究课题。从实际的角度来看,在数学领域,还没有一项关于学生辍学的实证研究将 ILD、动态框架和对个人关键状态的预测(情感状态)集成在一起,以便进行实时干预。在本文中,我们展示了如何在这些动态框架中使用前向滤波后向采样方法对个体的多元个体内变量和时变的个体类别(情感状态)进行贝叶斯预测。为了说明我们的方法,我们使用了一个实证示例,其中我们将所提出的预测方法应用于数学中一项大规模大学生辍学研究的 ILD,该研究从多个学生收集了超过 50 个测量时间点的多元观测数据 ([Formula: see text])。更具体地说,我们预测与辍学相关的情绪和行为。这使我们能够在实际辍学发生前 8 周预测到新兴的关键动态状态(例如,关键压力水平或决策前状态)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d9/9166886/7fa3a96933ee/11336_2022_9858_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验