Suppr超能文献

是否存在适用于强度调制质子治疗的单一射野大小和栅格?对头颈、前列腺和间皮瘤病例的模拟。

Is there a single spot size and grid for intensity modulated proton therapy? Simulation of head and neck, prostate and mesothelioma cases.

机构信息

Agenzia Provinciale per la Protonterapia, Trento, Italy.

出版信息

Med Phys. 2012 Mar;39(3):1298-308. doi: 10.1118/1.3683640.

Abstract

PURPOSE

To assess the quality of dose distributions in real clinical cases for different dimensions of scanned proton pencil beams. The distance between spots (i.e., the grid of delivery) is optimized for each dimension of the pencil beam.

METHODS

The authors vary the σ of the initial Gaussian size of the spot, from σ(x) = σ(y) = 3 mm to σ(x) = σ(y) = 8 mm, to evaluate the impact of the proton beam size on the quality of intensity modulated proton therapy (IMPT) plans. The distance between spots, Δx and Δy, is optimized on the spot plane, ranging from 4 to 12 mm (i.e., each spot size is coupled with the best spot grid resolution). In our Hyperion treatment planning system (TPS), constrained optimization is applied with respect to the organs at risk (OARs), i.e., the optimization tries to satisfy the dose objectives in the planning target volume (PTV) as long as all planning objectives for the OARs are met. Three-field plans for a nasopharynx case, two-field plans for a prostate case, and two-field plans for a malignant pleural mesothelioma case are considered in our analysis.

RESULTS

For the head and neck tumor, the best grids (i.e., distance between spots) are 5, 4, 6, 6, and 8 mm for σ = 3, 4, 5, 6, and 8 mm, respectively. σ ≤ 5 mm is required for tumor volumes with low dose and σ ≤ 4 mm for tumor volumes with high dose. For the prostate patient, the best grid is 4, 4, 5, 5, and 5 mm for σ = 3, 4, 5, 6, and 8 mm, respectively. Beams with σ > 3 mm did not satisfy our first clinical requirement that 95% of the prescribed dose is delivered to more than 95% of prostate and proximal seminal vesicles PTV. Our second clinical requirement, to cover the distal seminal vesicles PTV, is satisfied for beams as wide as σ = 6 mm. For the mesothelioma case, the low dose PTV prescription is well respected for all values of σ, while there is loss of high dose PTV coverage for σ > 5 mm. The best grids have a spacing of 6, 7, 8, 9, and 12 mm for σ = 3, 4, 5, 6, and 8 mm, respectively.

CONCLUSIONS

The maximum acceptable proton pencil beam σ depends on the volume treated, the protocol of delivery, and optimization of the plan. For the clinical cases, protocol and optimization used in this analysis, acceptable σs are ≤ 4 mm for the head and neck tumor, ≤ 3 mm for the prostate tumor and ≤ 6 mm for the malignant pleural mesothelioma. One can apply the same procedure used in this analysis when given a "class" of patients, a σ and a clinical protocol to determine the optimal grid spacing.

摘要

目的

评估不同扫描质子铅笔束尺寸的剂量分布质量。对于铅笔束的每个尺寸,优化光斑之间的距离(即输送网格)。

方法

作者改变初始光斑高斯尺寸 σ 的大小,从 σ(x)=σ(y)=3mm 到 σ(x)=σ(y)=8mm,以评估质子束尺寸对强度调制质子治疗(IMPT)计划质量的影响。光斑平面上优化光斑之间的距离 Δx 和 Δy,范围从 4 到 12mm(即每个光斑尺寸与最佳光斑网格分辨率相匹配)。在我们的 Hyperion 治疗计划系统(TPS)中,针对危及器官(OAR)应用约束优化,即优化试图在满足计划靶区(PTV)的剂量目标的同时满足 OAR 的所有计划目标。我们的分析考虑了鼻咽病例的三野计划、前列腺病例的两野计划和恶性胸膜间皮瘤病例的两野计划。

结果

对于头颈部肿瘤,对于 σ=3、4、5、6 和 8mm 的情况,最佳网格(即光斑之间的距离)分别为 5、4、6、6 和 8mm。对于低剂量肿瘤体积,需要 σ≤5mm;对于高剂量肿瘤体积,需要 σ≤4mm。对于前列腺患者,最佳网格分别为 4、4、5、5 和 5mm,对于 σ=3、4、5、6 和 8mm 的情况。宽度大于 3mm 的光束不能满足我们的第一个临床要求,即 95%的规定剂量输送到前列腺和近端精囊 PTV 的 95%以上。我们的第二个临床要求,即覆盖远端精囊 PTV,对于宽度可达 σ=6mm 的光束是可以满足的。对于间皮瘤病例,对于所有 σ 值,低剂量 PTV 处方都得到很好的尊重,而对于 σ>5mm 的情况,高剂量 PTV 覆盖会丢失。最佳网格的间距分别为 6、7、8、9 和 12mm,对于 σ=3、4、5、6 和 8mm 的情况。

结论

最大可接受质子铅笔束 σ 取决于治疗体积、输送方案和计划的优化。对于本分析中使用的临床病例、方案和优化,头颈部肿瘤的可接受 σ 为≤4mm,前列腺肿瘤的可接受 σ 为≤3mm,恶性胸膜间皮瘤的可接受 σ 为≤6mm。当给定一组患者、一个 σ 和一个临床方案时,可以应用本分析中使用的相同程序来确定最佳网格间距。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验