Centre for Mathematical Biology, Mathematical Institute, Oxford University, 24-29 St Giles', Oxford OX1 3LB, UK.
Br J Cancer. 2012 Mar 27;106(7):1280-7. doi: 10.1038/bjc.2012.58. Epub 2012 Mar 1.
Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts.
We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies.
The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1-7.2.
Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1-7.2 is most promising.
临床正电子发射断层扫描成像显示,与相邻正常组织相比,绝大多数人类癌症的葡萄糖代谢显著增加,导致肿瘤微环境呈酸性。最近的研究表明,通过全身缓冲剂降低这种酸度可显著抑制小鼠异种移植中转移的发展和生长。
我们应用并扩展了先前开发的血液和肿瘤缓冲数学模型,以检查在小鼠中口服碳酸氢盐缓冲剂的影响,以及在人类中的潜在影响。我们重现了缓冲剂治疗观察到的肿瘤 pH 值效应,在小鼠体内进行了模型预测的体内测试。我们将模型参数化以应用于人类,以确定转化安全性和疗效,并预测可能增强治疗反应的患者亚组,以及最有前途的组合或替代缓冲剂治疗。
该模型预测了以前未见过的碳酸氢盐治疗在小鼠中可能导致的潜在危险的血液 pH 值升高,我们的体内实验证实了这一点。模拟预测碳酸氢盐的疗效有限,尤其是在侵袭性更强的癌症患者中。我们预测缓冲剂治疗将最有效:在老年患者或肾功能受损的个体中;与质子产生抑制剂(如二氯乙酸)、肾小球滤过率抑制剂(如非甾体抗炎药和血管紧张素转换酶抑制剂)联合使用,或与具有最佳 pK 值为 7.1-7.2 的替代缓冲剂联合使用。
我们的数学模型证实碳酸氢盐是一种有效提高肿瘤 pH 值的试剂,但在使肿瘤 pH 值正常化所需的高剂量下可能会引起代谢性碱中毒。我们预测在老年患者或与质子产生抑制剂或 pK 值为 7.1-7.2 的缓冲剂联合使用时最有前途。