Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America.
PLoS One. 2012;7(2):e31522. doi: 10.1371/journal.pone.0031522. Epub 2012 Feb 22.
Previous studies have reported elevated levels of biogenic aldehydes in the brains of patients with Parkinson's disease (PD). In the brain, aldehydes are primarily detoxified by aldehyde dehydrogenases (ALDH). Reduced ALDH1 expression in surviving midbrain dopamine neurons has been reported in brains of patients who died with PD. In addition, impaired complex I activity, which is well documented in PD, reduces the availability of the NAD(+) co-factor required by multiple ALDH isoforms to catalyze the removal of biogenic aldehydes. We hypothesized that chronically decreased function of multiple aldehyde dehydrogenases consequent to exposure to environmental toxins and/or reduced ALDH expression, plays an important role in the pathophysiology of PD. To address this hypothesis, we generated mice null for Aldh1a1 and Aldh2, the two isoforms known to be expressed in substantia nigra dopamine neurons. Aldh1a1(-/-)×Aldh2(-/-) mice exhibited age-dependent deficits in motor performance assessed by gait analysis and by performance on an accelerating rotarod. Intraperitoneal administration of L-DOPA plus benserazide alleviated the deficits in motor performance. We observed a significant loss of neurons immunoreactive for tyrosine hydroxylase (TH) in the substantia nigra and a reduction of dopamine and metabolites in the striatum of Aldh1a1(-/-)×Aldh2(-/-) mice. We also observed significant increases in biogenic aldehydes reported to be neurotoxic, including 4-hydroxynonenal (4-HNE) and the aldehyde intermediate of dopamine metabolism, 3,4-dihydroxyphenylacetaldehyde (DOPAL). These results support the hypothesis that impaired detoxification of biogenic aldehydes may be important in the pathophysiology of PD and suggest that Aldh1a1(-/-)×Aldh2(-/-) mice may be a useful animal model of PD.
先前的研究报告称,帕金森病 (PD) 患者的大脑中生物醛的水平升高。在大脑中,醛主要通过醛脱氢酶 (ALDH) 进行解毒。在患有 PD 死亡的患者大脑中,已经报道了存活的中脑多巴胺神经元中 ALDH1 表达减少。此外,复杂 I 活性受损,这在 PD 中已有充分记录,会降低多种 ALDH 同工型催化生物醛去除所需的 NAD(+) 辅助因子的可用性。我们假设,由于暴露于环境毒素和/或 ALDH 表达减少,多种醛脱氢酶的慢性功能降低在 PD 的病理生理学中起重要作用。为了验证这一假设,我们生成了 Aldh1a1 和 Aldh2 缺失的小鼠,这两种同工型已知在黑质多巴胺神经元中表达。Aldh1a1(-/-)×Aldh2(-/-) 小鼠表现出与年龄相关的运动功能缺陷,通过步态分析和在加速旋转棒上的表现进行评估。腹腔内给予 L-DOPA 加 benserazide 可缓解运动功能缺陷。我们观察到黑质中酪氨酸羟化酶 (TH) 免疫反应性神经元明显丢失,以及 Aldh1a1(-/-)×Aldh2(-/-) 小鼠纹状体中多巴胺和代谢物减少。我们还观察到报告具有神经毒性的生物醛显著增加,包括 4-羟基壬烯醛 (4-HNE) 和多巴胺代谢的醛中间产物 3,4-二羟基苯乙醛 (DOPAL)。这些结果支持这样的假设,即生物醛的解毒功能受损可能在 PD 的病理生理学中很重要,并表明 Aldh1a1(-/-)×Aldh2(-/-) 小鼠可能是 PD 的有用动物模型。