Suppr超能文献

HTreeQA:在基于基因型数据的数量性状基因座研究中使用半完美系统发育树。

HTreeQA: Using Semi-Perfect Phylogeny Trees in Quantitative Trait Loci Study on Genotype Data.

出版信息

G3 (Bethesda). 2012 Feb;2(2):175-89. doi: 10.1534/g3.111.001768. Epub 2012 Feb 1.

Abstract

With the advances in high-throughput genotyping technology, the study of quantitative trait loci (QTL) has emerged as a promising tool to understand the genetic basis of complex traits. Methodology development for the study of QTL recently has attracted significant research attention. Local phylogeny-based methods have been demonstrated to be powerful tools for uncovering significant associations between phenotypes and single-nucleotide polymorphism markers. However, most existing methods are designed for homozygous genotypes, and a separate haplotype reconstruction step is often needed to resolve heterozygous genotypes. This approach has limited power to detect nonadditive genetic effects and imposes an extensive computational burden. In this article, we propose a new method, HTreeQA, that uses a tristate semi-perfect phylogeny tree to approximate the perfect phylogeny used in existing methods. The semi-perfect phylogeny trees are used as high-level markers for association study. HTreeQA uses the genotype data as direct input without phasing. HTreeQA can handle complex local population structures. It is suitable for QTL mapping on any mouse populations, including the incipient Collaborative Cross lines. Applied HTreeQA, significant QTLs are found for two phenotypes of the PreCC lines, white head spot and running distance at day 5/6. These findings are consistent with known genes and QTL discovered in independent studies. Simulation studies under three different genetic models show that HTreeQA can detect a wider range of genetic effects and is more efficient than existing phylogeny-based approaches. We also provide rigorous theoretical analysis to show that HTreeQA has a lower error rate than alternative methods.

摘要

随着高通量基因分型技术的进步,数量性状基因座 (QTL) 的研究已成为理解复杂性状遗传基础的一种很有前途的工具。最近,QTL 研究的方法学发展引起了广泛的研究关注。基于局部系统发生的方法已被证明是揭示表型与单核苷酸多态性标记之间显著关联的有力工具。然而,大多数现有的方法都是针对纯合基因型设计的,通常需要单独的单倍型重建步骤来解决杂合基因型。这种方法检测非加性遗传效应的能力有限,并且计算负担很大。在本文中,我们提出了一种新方法 HTreeQA,它使用三态半完美系统发生树来近似现有方法中使用的完美系统发生树。半完美系统发生树用作关联研究的高级标记。HTreeQA 使用基因型数据作为直接输入,无需定相。HTreeQA 可以处理复杂的局部群体结构。它适用于任何小鼠群体的 QTL 作图,包括初始协同交叉系。应用 HTreeQA,在 PreCC 系的两个表型——白头斑和第 5/6 天的跑动距离——中发现了显著的 QTL。这些发现与独立研究中发现的已知基因和 QTL 一致。在三种不同遗传模型下的模拟研究表明,HTreeQA 可以检测到更广泛的遗传效应,并且比现有的基于系统发生的方法更有效。我们还提供了严格的理论分析,表明 HTreeQA 的错误率低于替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a0f/3284325/7ebf0a92fe3e/175f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验