Suppr超能文献

在多亲本群体中推断 QTL 的等位基因系列。

Inferring the Allelic Series at QTL in Multiparental Populations.

机构信息

Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599.

Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599.

出版信息

Genetics. 2020 Dec;216(4):957-983. doi: 10.1534/genetics.120.303393. Epub 2020 Oct 20.

Abstract

Multiparental populations (MPPs) are experimental populations in which the genome of every individual is a mosaic of known founder haplotypes. These populations are useful for detecting quantitative trait loci (QTL) because tests of association can leverage inferred founder haplotype descent. It is difficult, however, to determine how haplotypes at a locus group into distinct functional alleles, termed the allelic series. The allelic series is important because it provides information about the number of causal variants at a QTL and their combined effects. In this study, we introduce a fully Bayesian model selection framework for inferring the allelic series. This framework accounts for sources of uncertainty found in typical MPPs, including the number and composition of functional alleles. Our prior distribution for the allelic series is based on the Chinese restaurant process, a relative of the Dirichlet process, and we leverage its connection to the coalescent to introduce additional prior information about haplotype relatedness via a phylogenetic tree. We evaluate our approach via simulation and apply it to QTL from two MPPs: the Collaborative Cross (CC) and the Synthetic Population Resource (DSPR). We find that, although posterior inference of the exact allelic series is often uncertain, we are able to distinguish biallelic QTL from more complex multiallelic cases. Additionally, our allele-based approach improves haplotype effect estimation when the true number of functional alleles is small. Our method, Tree-Based Inference of Multiallelism via Bayesian Regression (TIMBR), provides new insight into the genetic architecture of QTL in MPPs.

摘要

多亲种群 (MPP) 是一种实验种群,其中每个个体的基因组都是已知创始单倍型的镶嵌体。这些群体对于检测数量性状位点 (QTL) 很有用,因为关联测试可以利用推断的创始单倍型遗传来进行。然而,确定一个基因座的单倍型如何分组为不同的功能等位基因,即等位基因系列,是很困难的。等位基因系列很重要,因为它提供了关于 QTL 中因果变异的数量及其组合效应的信息。在这项研究中,我们引入了一种完全贝叶斯模型选择框架来推断等位基因系列。该框架考虑了典型 MPP 中存在的不确定性来源,包括功能等位基因的数量和组成。我们的等位基因系列先验分布基于中国餐馆过程,这是狄利克雷过程的一种变体,我们利用它与合并的关系,通过系统发生树引入有关单倍型相关性的额外先验信息。我们通过模拟评估我们的方法,并将其应用于来自两个 MPP 的 QTL:合作交叉 (CC) 和综合种群资源 (DSPR)。我们发现,尽管精确等位基因系列的后验推断通常不确定,但我们能够区分双等位基因 QTL 与更复杂的多等位基因情况。此外,当功能等位基因的真实数量较小时,我们基于等位基因的方法可以改善单倍型效应估计。我们的方法,通过贝叶斯回归的多等位基因基于树的推断 (TIMBR),为 MPP 中 QTL 的遗传结构提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec3/7768242/a41cfff541be/957f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验