Suppr超能文献

基于超薄 3C-SiC 纳米晶体表面自催化效应的高效电化学析氢。

High-efficiency electrochemical hydrogen evolution based on surface autocatalytic effect of ultrathin 3C-SiC nanocrystals.

机构信息

National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China.

出版信息

Nano Lett. 2012 Mar 14;12(3):1545-8. doi: 10.1021/nl3006947. Epub 2012 Mar 5.

Abstract

Good understanding of the reaction mechanism in the electrochemical reduction of water to hydrogen is crucial to renewable energy technologies. Although previous studies have revealed that the surface properties of materials affect the catalytic reactivity, the effects of a catalytic surface on the hydrogen evolution reaction (HER) on the molecular level are still not well understood. Contrary to general belief, water molecules do not adsorb onto the surfaces of 3C-SiC nanocrystals (NCs), but rather spontaneously dissociate via a surface autocatalytic process forming a complex consisting of -H and -OH fragments. In this study, we show that ultrathin 3C-SiC NCs possess superior electrocatalytic activity in the HER. This arises from the large reduction in the activation barrier on the NC surface enabling efficient dissociation of H(2)O molecules. Furthermore, the ultrathin 3C-SiC NCs show enhanced HER activity in photoelectrochemical cells and are very promising to the water splitting based on the synergistic electrocatalytic and photoelectrochemical actions. This study provides a molecular-level understanding of the HER mechanism and reveals that NCs with surface autocatalytic effects can be used to split water with high efficiency thereby enabling renewable and economical production of hydrogen.

摘要

深入理解电化学还原水制氢的反应机制对于可再生能源技术至关重要。尽管先前的研究表明材料的表面特性会影响催化反应活性,但对于催化表面在分子水平上对析氢反应(HER)的影响仍了解不足。与普遍观点相反,水分子不会吸附在 3C-SiC 纳米晶体(NCs)的表面上,而是通过表面自催化过程自发解离,形成由-H 和 -OH 片段组成的复合物。在这项研究中,我们表明,超薄 3C-SiC NCs 在 HER 中具有优异的电催化活性。这是由于 NC 表面上的活化能垒大大降低,从而使 H(2)O 分子能够有效地解离。此外,超薄 3C-SiC NCs 在光电化学电池中表现出增强的 HER 活性,并且非常有希望基于协同电催化和光电化学作用来进行水分解。这项研究提供了对 HER 机制的分子水平理解,并揭示了具有表面自催化效应的 NCs 可用于高效地分解水,从而实现可再生和经济的氢气生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验