Han Xiuxiu, Heuser Steffen, Tong Xili, Yang Nianjun, Guo Xiang-Yun, Jiang Xin
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Chemistry. 2020 Mar 18;26(16):3586-3590. doi: 10.1002/chem.201905218. Epub 2020 Mar 3.
Cubic silicon carbide (3C-SiC) material feature a suitable bandgap and high resistance to photocorrosion. Thus, it has been emerged as a promising semiconductor for hydrogen evolution. Here, the relationship between the photoelectrochemical properties and the microstructures of different SiC materials is demonstrated. For visible-light-derived water splitting to hydrogen production, nanocrystalline, microcrystalline and epitaxial (001) 3C-SiC films are applied as the photocathodes. The epitaxial 3C-SiC film presents the highest photoelectrochemical activity for hydrogen evolution, because of its perfect (001) orientation, high phase purity, low resistance, and negative conduction band energy level. This finding offers a strategy to design SiC-based photocathodes with superior photoelectrochemical performances.
立方碳化硅(3C-SiC)材料具有合适的带隙和高抗光腐蚀性。因此,它已成为一种有前途的析氢半导体。在此,展示了不同SiC材料的光电化学性质与微观结构之间的关系。对于可见光驱动的水分解制氢,纳米晶、微晶和外延(001)3C-SiC薄膜被用作光阴极。外延3C-SiC薄膜由于其完美的(001)取向、高相纯度、低电阻和负导带能级,呈现出最高的析氢光电化学活性。这一发现为设计具有优异光电化学性能的SiC基光阴极提供了一种策略。