Suppr超能文献

通过球磨立方碳化硅纳米颗粒在可见光照射下将CO高度选择性光催化还原为CH₄ 。

Highly Selective Photocatalytic CO Reduction to CH by Ball-Milled Cubic Silicon Carbide Nanoparticles under Visible-Light Irradiation.

作者信息

Li Hao, Sun Jianwu

机构信息

Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden.

出版信息

ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5073-5078. doi: 10.1021/acsami.0c19945. Epub 2021 Jan 22.

Abstract

The ultimate goal of photocatalytic CO reduction is to achieve high selectivity for a single product with high efficiency. One of the most significant challenges is that expensive catalysts prepared through complex processes are usually used. Herein, gram-scale cubic silicon carbide (3C-SiC) nanoparticles are prepared through a top-down ball-milling approach from low-priced 3C-SiC powders. This facile mechanical milling strategy ensures large-scale production of 3C-SiC nanoparticles with an amorphous silicon oxide (SiO) shell and simultaneously induces abundant surface states. The surface states are demonstrated to trap the photogenerated carriers, thus remarkably enhancing the charge separation, while the thin SiO shell prevents 3C-SiC from corrosion under visible light. The unique electronic structure of 3C-SiC tackles the challenge associated with low selectivity of photocatalytic CO reduction to C compounds. In conjugation with efficient water oxidation, 3C-SiC nanoparticles can reduce CO into CH with selectivity over 90%.

摘要

光催化CO还原的最终目标是高效地实现对单一产物的高选择性。最严峻的挑战之一是通常使用通过复杂工艺制备的昂贵催化剂。在此,通过自上而下的球磨方法,由低价的3C-SiC粉末制备出克级立方碳化硅(3C-SiC)纳米颗粒。这种简便的机械研磨策略确保了大规模生产具有非晶硅氧化物(SiO)壳层的3C-SiC纳米颗粒,同时诱导出丰富的表面态。表面态被证明能够捕获光生载流子,从而显著增强电荷分离,而薄的SiO壳层则防止3C-SiC在可见光下被腐蚀。3C-SiC独特的电子结构解决了与光催化CO还原为C化合物的低选择性相关的挑战。与高效的水氧化相结合,3C-SiC纳米颗粒能够将CO还原为CH,选择性超过90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d8b/7877699/7436ab348fc1/am0c19945_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验