Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
Cell. 2012 Mar 2;148(5):1029-38. doi: 10.1016/j.cell.2011.12.036.
Neurotransmission requires anterograde axonal transport of dense core vesicles (DCVs) containing neuropeptides and active zone components from the soma to nerve terminals. However, it is puzzling how one-way traffic could uniformly supply sequential release sites called en passant boutons. Here, Drosophila neuropeptide-containing DCVs are tracked in vivo for minutes with a new method called simultaneous photobleaching and imaging (SPAIM). Surprisingly, anterograde DCVs typically bypass proximal boutons to accumulate initially in the most distal bouton. Then, excess distal DCVs undergo dynactin-dependent retrograde transport back through proximal boutons into the axon. Just before re-entering the soma, DCVs again reverse for another round of anterograde axonal transport. While circulating over long distances, both anterograde and retrograde DCVs are captured sporadically in en passant boutons. Therefore, vesicle circulation, which includes long-range retrograde transport and inefficient bidirectional capture, overcomes the limitations of one-way anterograde transport to uniformly supply release sites with DCVs.
神经传递需要含有神经肽和活性区成分的致密核心囊泡 (DCV) 从体部顺行轴突运输到神经末梢。然而,令人困惑的是,单向运输如何能够均匀地供应称为顺行突间小泡的顺序释放位点。在这里,使用一种称为同时光漂白和成像 (SPAIM) 的新方法,对果蝇含神经肽的 DCV 进行了数分钟的体内追踪。令人惊讶的是,顺行 DCV 通常绕过近端突间小泡,最初积累在最远端突间小泡中。然后,多余的远端 DCV 通过动力蛋白依赖性逆行运输回到近端突间小泡中进入轴突。就在重新进入体部之前,DCV 再次逆转进行另一轮顺行轴突运输。在长距离循环过程中,顺行和逆行 DCV 都会在顺行突间小泡中偶尔捕获。因此,囊泡循环包括远程逆行运输和低效的双向捕获,克服了单向顺行运输的局限性,均匀地用 DCV 供应释放位点。