Neuroscience Research Australia, University of New South Wales, Sydney, Australia.
J Biomech. 2012 Apr 30;45(7):1186-91. doi: 10.1016/j.jbiomech.2012.01.050. Epub 2012 Mar 3.
Syringomyelia is a neurological disorder characterised by high pressure fluid-filled cysts within the spinal cord. As syringomyelia is associated with abnormalities of the central nervous system that obstruct cerebrospinal fluid (CSF) flow, it is thought that changes in CSF dynamics play an important role in its pathogenesis. Using three-dimensional computational models of the spinal subarachnoid space (SAS), this study aims to determine SAS obstructions, such as arachnoiditis, change in CSF dynamics in the SAS. The geometry of the SAS was reconstructed from a series of MRI images. CSF is modelled as an incompressible Newtonian fluid with a dynamic viscosity of 1 mPa s. Three computational models simulated CSF flow in either the unobstructed SAS, or with the SAS obstructed by a porous region simulating dorsal or circumferential arachnoiditis. The permeability of this porous obstruction was varied for the model with dorsal arachnoiditis. The results show that arachnoiditis increases flow resistance in the SAS and this is accompanied by a modest increase in magnitude and/or shift in timing (with respect to the cardiac cycle) of the CSF pressure drop across the region of arachnoiditis. This study suggests that syrinx formation may be related to a change in temporal CSF pulse pressure dynamics.
脊髓空洞症是一种神经系统疾病,其特征是脊髓内充满高压液体的囊肿。由于脊髓空洞症与阻碍脑脊液(CSF)流动的中枢神经系统异常有关,因此人们认为 CSF 动力学的变化在其发病机制中起着重要作用。本研究使用脊髓蛛网膜下腔(SAS)的三维计算模型,旨在确定 SAS 中的蛛网膜粘连等阻塞物如何改变 SAS 中的 CSF 动力学。SAS 的几何形状是从一系列 MRI 图像中重建的。CSF 被建模为不可压缩牛顿流体,其动态粘度为 1 mPa s。三个计算模型模拟了未阻塞的 SAS 中的 CSF 流动,或者模拟背侧或环形蛛网膜粘连的 SAS 中的 CSF 流动受阻。对于背侧蛛网膜粘连模型,改变了该多孔阻塞物的渗透性。结果表明,蛛网膜粘连会增加 SAS 中的流动阻力,并且伴随着穿过蛛网膜粘连区域的 CSF 压降的幅度和/或时间(相对于心动周期)略有增加。这项研究表明,脊髓空洞的形成可能与 CSF 脉冲压力动力学的时间变化有关。