Biomedical Sciences Research Complex, Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK.
J Magn Reson. 2012 Mar;216:175-82. doi: 10.1016/j.jmr.2012.01.019. Epub 2012 Feb 8.
A technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.5-8 nm between paramagnetic centres but the orientation selectivity is weak. In contrast, working at higher frequencies increases the orientation selection but usually at the expense of decreased microwave power and PELDOR modulation depth. Here it is shown that a home-built high-power pulsed W-band EPR spectrometer (HiPER) with a large instantaneous bandwidth enables one to achieve PELDOR data with a high degree of orientation selectivity and large modulation depths. We demonstrate a measurement methodology that gives a set of PELDOR time traces that yield highly constrained data sets. Simulating the resulting time traces provides a deeper insight into the conformational flexibility and exchange coupling of three bisnitroxide model systems. These measurements provide strong evidence that W-band PELDOR may prove to be an accurate and quantitative tool in assessing the relative orientations of nitroxide spin labels and to correlate those orientations to the underlying biological structure and dynamics.
一种越来越多地用于确定生物大分子结构和构象灵活性的技术是脉冲电子-电子双共振(PELDOR 或 DEER),这是一种基于电子顺磁共振(EPR)的技术。在 X 波段频率(9.5GHz)下,PELDOR 能够精确测量在 1.5nm 至 8nm 范围内的顺磁中心之间的距离,但取向选择性较弱。相比之下,在更高频率下工作会增加取向选择,但通常会以微波功率和 PELDOR 调制深度降低为代价。本文表明,具有大瞬时带宽的自制高功率脉冲 W 波段 EPR 光谱仪(HiPER)能够实现具有高度取向选择性和大调制深度的 PELDOR 数据。我们展示了一种测量方法,该方法提供了一组 PELDOR 时间迹线,可产生高度约束的数据集。模拟得到的时间迹线深入了解了三个双硝氧自由基模型系统的构象灵活性和交换耦合。这些测量结果有力地证明了 W 波段 PELDOR 可能成为评估硝氧自由基自旋标记相对取向的准确和定量工具,并将这些取向与潜在的生物结构和动力学联系起来。