Suppr超能文献

应用于膜蛋白的生物物理电子顺磁共振研究。

Biophysical EPR Studies Applied to Membrane Proteins.

作者信息

Sahu Indra D, Lorigan Gary A

机构信息

Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, United States of America.

出版信息

J Phys Chem Biophys. 2015;5(6). doi: 10.4172/2161-0398.1000188. Epub 2015 Oct 15.

Abstract

Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented.

摘要

膜蛋白在控制生物能量学、功能活性以及启动各种复杂生物系统中的信号通路方面非常重要。它们还约占潜在药物靶点的50%。电子顺磁共振光谱是一种非常流行且强大的生物物理工具,用于研究膜蛋白的结构和动力学特性。本文将对最常用的电子顺磁共振技术进行基本概述,并给出近期应用实例,以解答有关膜蛋白系统的相关结构和动力学问题。

相似文献

1
Biophysical EPR Studies Applied to Membrane Proteins.
J Phys Chem Biophys. 2015;5(6). doi: 10.4172/2161-0398.1000188. Epub 2015 Oct 15.
2
Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins.
Biomolecules. 2020 May 13;10(5):763. doi: 10.3390/biom10050763.
3
Site-Directed Spin Labeling EPR for Studying Membrane Proteins.
Biomed Res Int. 2018 Jan 23;2018:3248289. doi: 10.1155/2018/3248289. eCollection 2018.
5
Use of electron paramagnetic resonance to solve biochemical problems.
Biochemistry. 2013 Sep 3;52(35):5967-84. doi: 10.1021/bi400834a. Epub 2013 Aug 20.
6
EPR Techniques to Probe Insertion and Conformation of Spin-Labeled Proteins in Lipid Bilayers.
Methods Mol Biol. 2019;2003:493-528. doi: 10.1007/978-1-4939-9512-7_21.
7
Exploring intrinsically disordered proteins using site-directed spin labeling electron paramagnetic resonance spectroscopy.
Front Mol Biosci. 2015 May 19;2:21. doi: 10.3389/fmolb.2015.00021. eCollection 2015.
8
Site-directed spin labeling EPR spectroscopy in protein research.
Biol Chem. 2013 Oct;394(10):1281-300. doi: 10.1515/hsz-2013-0155.
9
Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.
Biochim Biophys Acta. 2016 May;1857(5):548-556. doi: 10.1016/j.bbabio.2015.08.009. Epub 2015 Sep 1.
10
Role of membrane mimetics on biophysical EPR studies of membrane proteins.
Biochim Biophys Acta Biomembr. 2023 Apr;1865(4):184138. doi: 10.1016/j.bbamem.2023.184138. Epub 2023 Feb 9.

引用本文的文献

2
Native mass spectrometry prescreening of G protein-coupled receptor complexes for cryo-EM structure determination.
Structure. 2024 Dec 5;32(12):2206-2219.e4. doi: 10.1016/j.str.2024.10.004. Epub 2024 Oct 28.
3
Perspective on the Effect of Membrane Mimetics on Dynamic Properties of Integral Membrane Proteins.
J Phys Chem B. 2023 May 4;127(17):3757-3765. doi: 10.1021/acs.jpcb.2c07324. Epub 2023 Apr 20.
4
chiLife: An open-source Python package for in silico spin labeling and integrative protein modeling.
PLoS Comput Biol. 2023 Mar 31;19(3):e1010834. doi: 10.1371/journal.pcbi.1010834. eCollection 2023 Mar.
6
Pinholin S mutations induce structural topology and conformational changes.
Biochim Biophys Acta Biomembr. 2021 Dec 1;1863(12):183771. doi: 10.1016/j.bbamem.2021.183771. Epub 2021 Sep 7.
7
Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S Using DEER Spectroscopy.
J Phys Chem B. 2020 Dec 17;124(50):11396-11405. doi: 10.1021/acs.jpcb.0c09081. Epub 2020 Dec 8.
8
Native Mass Spectrometry of Membrane Proteins.
Anal Chem. 2021 Jan 12;93(1):583-597. doi: 10.1021/acs.analchem.0c04342. Epub 2020 Oct 28.
9
Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins.
Biomolecules. 2020 May 13;10(5):763. doi: 10.3390/biom10050763.
10
Development of lamellar gel phase emulsion containing baru oil ( Vog.) as a prospective delivery system for cutaneous application.
Asian J Pharm Sci. 2018 Mar;13(2):183-190. doi: 10.1016/j.ajps.2017.09.003. Epub 2017 Oct 12.

本文引用的文献

2
Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes.
Sci Rep. 2015 Jul 20;5:11757. doi: 10.1038/srep11757.
3
Conformational changes of the HsDHODH N-terminal Microdomain via DEER Spectroscopy.
J Phys Chem B. 2015 Jul 16;119(28):8693-7. doi: 10.1021/acs.jpcb.5b01706. Epub 2015 Jul 2.
4
The double-histidine Cu²⁺-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements.
Angew Chem Int Ed Engl. 2015 May 18;54(21):6330-4. doi: 10.1002/anie.201501968. Epub 2015 Mar 27.
5
A new window into the molecular physiology of membrane proteins.
J Physiol. 2015 Jan 15;593(2):355-62. doi: 10.1113/jphysiol.2014.283150. Epub 2014 Dec 1.
8
Structural investigation of the transmembrane domain of KCNE1 in proteoliposomes.
Biochemistry. 2014 Oct 14;53(40):6392-401. doi: 10.1021/bi500943p. Epub 2014 Oct 3.
9
Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain.
Nat Struct Mol Biol. 2014 Feb;21(2):160-6. doi: 10.1038/nsmb.2747. Epub 2014 Jan 12.
10
DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles.
Biochemistry. 2013 Sep 24;52(38):6627-32. doi: 10.1021/bi4009984. Epub 2013 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验