Suppr超能文献

大肠杆菌类核中的结构组织

Architectural organization in E. coli nucleoid.

作者信息

Macvanin Mirjana, Adhya Sankar

机构信息

Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Biochim Biophys Acta. 2012 Jul;1819(7):830-5. doi: 10.1016/j.bbagrm.2012.02.012. Epub 2012 Feb 22.

Abstract

In contrast to organized hierarchical structure of eukaryotic chromosome, bacterial chromosomes are believed not to have such structures. The genomes of bacteria are condensed into a compact structure called the nucleoid. Among many architectural, histone-like proteins which associate with the chromosomal DNA is HU which is implicated in folding DNA into a compact structure by bending and wrapping DNA. Unlike the majority of other histone-like proteins, HU is highly conserved in eubacteria and unique in its ability to bind RNA. Furthermore, an HU mutation profoundly alters the cellular transcription profile and consequently has global effects on physiology and the lifestyle of E. coli. Here we provide a short overview of the mechanisms by which the nucleoid is organized into different topological domains. We propose that HU is a major player in creating domain-specific superhelicities and thus influences the transcription profile from the constituent promoters. This article is part of a Special Issue entitled: Chromatin in time and space.

摘要

与真核生物染色体有组织的层次结构不同,细菌染色体被认为没有这样的结构。细菌的基因组被压缩成一种称为类核的紧凑结构。在许多与染色体DNA相关的结构蛋白、类组蛋白中,HU通过弯曲和缠绕DNA将DNA折叠成紧凑结构。与大多数其他类组蛋白不同,HU在真细菌中高度保守,并且具有结合RNA的独特能力。此外,HU突变会深刻改变细胞转录谱,从而对大肠杆菌的生理学和生活方式产生全局性影响。在这里,我们简要概述了类核被组织成不同拓扑结构域的机制。我们提出,HU是产生结构域特异性超螺旋的主要参与者,从而影响组成型启动子的转录谱。本文是名为《时空染色质》特刊的一部分。

相似文献

1
Architectural organization in E. coli nucleoid.
Biochim Biophys Acta. 2012 Jul;1819(7):830-5. doi: 10.1016/j.bbagrm.2012.02.012. Epub 2012 Feb 22.
2
[The bacterial nucleoid].
Rev Latinoam Microbiol. 1995 Jul-Sep;37(3):281-90.
3
The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective.
J Struct Biol. 2006 Nov;156(2):262-72. doi: 10.1016/j.jsb.2006.05.006. Epub 2006 Jun 3.
4
A New Noncoding RNA Arranges Bacterial Chromosome Organization.
mBio. 2015 Aug 25;6(4):e00998-15. doi: 10.1128/mBio.00998-15.
6
Architecture of the Escherichia coli nucleoid.
PLoS Genet. 2019 Dec 12;15(12):e1008456. doi: 10.1371/journal.pgen.1008456. eCollection 2019 Dec.
7
Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU.
EMBO Rep. 2010 Jan;11(1):59-64. doi: 10.1038/embor.2009.232. Epub 2009 Nov 13.
8
Spatio-temporal organization of the chromosome from base to cellular length scales.
EcoSal Plus. 2024 Dec 12;12(1):eesp00012022. doi: 10.1128/ecosalplus.esp-0001-2022. Epub 2024 Jun 12.
9
DNA-RNA interactions are critical for chromosome condensation in .
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12225-12230. doi: 10.1073/pnas.1711285114. Epub 2017 Oct 30.
10
Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces?
FEMS Microbiol Lett. 1995 Sep 15;131(3):235-42. doi: 10.1111/j.1574-6968.1995.tb07782.x.

引用本文的文献

1
2
Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression.
Mol Microbiol. 2024 Jul;122(1):81-112. doi: 10.1111/mmi.15283. Epub 2024 Jun 7.
3
Structure of the E. coli nucleoid-associated protein YejK reveals a novel DNA binding clamp.
Nucleic Acids Res. 2024 Jul 8;52(12):7354-7366. doi: 10.1093/nar/gkae459.
7
Bacterial histones unveiled.
Nat Microbiol. 2023 Nov;8(11):1939-1941. doi: 10.1038/s41564-023-01509-5.
8
Synthetic lethal mutants in define pathways necessary for survival with RNase H deficiency.
J Bacteriol. 2023 Oct 26;205(10):e0028023. doi: 10.1128/jb.00280-23. Epub 2023 Oct 11.
9
The distinct transcriptome of virulence-associated phylogenetic group B2 .
Microbiol Spectr. 2023 Sep 19;11(5):e0208523. doi: 10.1128/spectrum.02085-23.
10
RNA polymerase drives ribonucleotide excision DNA repair in E. coli.
Cell. 2023 May 25;186(11):2425-2437.e21. doi: 10.1016/j.cell.2023.04.029. Epub 2023 May 16.

本文引用的文献

1
Chromosome organization by a nucleoid-associated protein in live bacteria.
Science. 2011 Sep 9;333(6048):1445-9. doi: 10.1126/science.1204697.
4
Translation-independent localization of mRNA in E. coli.
Science. 2011 Feb 25;331(6020):1081-4. doi: 10.1126/science.1195691.
5
Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU.
EMBO Rep. 2010 Jan;11(1):59-64. doi: 10.1038/embor.2009.232. Epub 2009 Nov 13.
6
The Chlamydomonas chloroplast HLP protein is required for nucleoid organization and genome maintenance.
Mol Plant. 2009 Nov;2(6):1223-32. doi: 10.1093/mp/ssp083. Epub 2009 Oct 29.
7
Why and how bacteria localize proteins.
Science. 2009 Nov 27;326(5957):1225-8. doi: 10.1126/science.1175685.
8
Protein occupancy landscape of a bacterial genome.
Mol Cell. 2009 Jul 31;35(2):247-53. doi: 10.1016/j.molcel.2009.06.035.
9
The essential histone-like protein HU plays a major role in Deinococcus radiodurans nucleoid compaction.
Mol Microbiol. 2009 Jul;73(2):240-52. doi: 10.1111/j.1365-2958.2009.06766.x. Epub 2009 Jun 28.
10
The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction.
PLoS One. 2009;4(2):e4367. doi: 10.1371/journal.pone.0004367. Epub 2009 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验