Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
PLoS Negl Trop Dis. 2012;6(2):e1559. doi: 10.1371/journal.pntd.0001559. Epub 2012 Feb 28.
Entamoeba histolytica is responsible for causing amoebiasis. Polyamine biosynthesis pathway enzymes are potential drug targets in parasitic protozoan diseases. The first and rate-limiting step of this pathway is catalyzed by ornithine decarboxylase (ODC). ODC enzyme functions as an obligate dimer. However, partially purified ODC from E. histolytica (EhODC) is reported to exist in a pentameric state.
In present study, the oligomeric state of EhODC was re-investigated. The enzyme was over-expressed in Escherichia coli and purified. Pure protein was used for determination of secondary structure content using circular dichroism spectroscopy. The percentages of α-helix, β-sheets and random coils in EhODC were estimated to be 39%, 25% and 36% respectively. Size-exclusion chromatography and mass spectrophotometry analysis revealed that EhODC enzyme exists in dimeric form. Further, computational model of EhODC dimer was generated. The homodimer contains two separate active sites at the dimer interface with Lys57 and Cys334 residues of opposite monomers contributing to each active site. Molecular dynamic simulations were performed and the dimeric structure was found to be very stable with RMSD value ∼0.327 nm. To gain insight into the functional role, the interface residues critical for dimerization and active site formation were identified and mutated. Mutation of Lys57Ala or Cys334Ala completely abolished enzyme activity. Interestingly, partial restoration of the enzyme activity was observed when inactive Lys57Ala and Cys334Ala mutants were mixed confirming that the dimer is the active form. Furthermore, Gly361Tyr and Lys157Ala mutations at the dimer interface were found to abolish the enzyme activity and destabilize the dimer.
To our knowledge, this is the first report which demonstrates that EhODC is functional in the dimeric form. These findings and availability of 3D structure model of EhODC dimer opens up possibilities for alternate enzyme inhibition strategies by targeting the dimer disruption.
溶组织内阿米巴是引起阿米巴病的原因。多胺生物合成途径酶是寄生原生动物疾病的潜在药物靶点。该途径的第一步和限速步骤由鸟氨酸脱羧酶(ODC)催化。ODC 酶作为必需的二聚体发挥作用。然而,据报道,从溶组织内阿米巴中部分纯化的 ODC(EhODC)以五聚体状态存在。
在本研究中,重新研究了 EhODC 的寡聚状态。该酶在大肠杆菌中过表达并纯化。使用圆二色性光谱法测定纯蛋白的二级结构含量。EhODC 的α-螺旋、β-折叠和无规卷曲的百分比分别估计为 39%、25%和 36%。尺寸排阻色谱和质谱分析表明,EhODC 酶以二聚体形式存在。此外,还生成了 EhODC 二聚体的计算模型。同二聚体在二聚体界面包含两个独立的活性位点,其中相反单体的 Lys57 和 Cys334 残基分别贡献于每个活性位点。进行了分子动力学模拟,发现二聚体结构非常稳定,均方根偏差(RMSD)值约为 0.327nm。为了深入了解功能作用,确定了对二聚化和活性位点形成至关重要的界面残基,并对其进行了突变。Lys57Ala 或 Cys334Ala 的突变完全消除了酶活性。有趣的是,当失活的 Lys57Ala 和 Cys334Ala 突变体混合时,观察到部分恢复了酶活性,证实二聚体是活性形式。此外,还发现二聚体界面处的 Gly361Tyr 和 Lys157Ala 突变会使酶失活并使二聚体不稳定。
据我们所知,这是首次报道 EhODC 以二聚体形式发挥功能。这些发现和 EhODC 二聚体的 3D 结构模型的可用性为通过靶向二聚体破坏来实现替代酶抑制策略开辟了可能性。