Suppr超能文献

心室肌细胞模型中的稳定性和持续振荡。

Stability and sustained oscillations in a ventricular cardiomyocyte model.

机构信息

Department of Biophysics and Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, Romania,

出版信息

Interdiscip Sci. 2012 Mar;4(1):1-18. doi: 10.1007/s12539-012-0116-y. Epub 2012 Mar 6.

Abstract

The Luo-Rudy I model, describing the electrophysiology of a ventricular cardiomyocyte, is associated with an 8-dimensional discontinuous dynamical system with logarithmic and exponential non-linearities depending on 15 parameters. The associated stationary problem was reduced to a nonlinear system in only two unknowns, the transmembrane potential V and the intracellular calcium concentration Ca. By numerical approaches appropriate to bifurcation problems, sections in the static bifurcation diagram were determined. For a variable steady depolarizing or hyperpolarizing current (I (st)), the corresponding projection of the static bifurcation diagram in the (I (st), V) plane is complex, featuring three branches of stationary solutions joined by two limit points. On the upper branch oscillations can occur, being either damped at a stable focus or diverted to the lower branch of stable stationary solutions when reaching the unstable manifold of a homoclinic saddle, thus resulting in early after-depolarizations (EADs). The middle branch of solutions is a series of unstable saddle points, while the lower one a series of stable nodes. For variable slow inward and K(+) current maximal conductances (g (si) and g (K)), in a range between 0 and 4-fold normal values, the dynamics is even more complex, and in certain instances sustained oscillations tending to a limit cycle appear. All these types of behavior were correctly predicted by linear stability analysis and bifurcation theory methods, leading to identification of Hopf bifurcation points, limit points of cycles and period doubling bifurcations. In particular settings, e.g. one-fifth-of-normal g (si), EADs and sustained high amplitude oscillations due to an unstable resting state may occur simultaneously.

摘要

罗-鲁迪 I 模型描述了心室肌细胞的电生理特性,它与一个 8 维不连续动力系统相关联,该系统具有对数和指数非线性,取决于 15 个参数。相关的定态问题被简化为一个只有两个未知数的非线性系统,即跨膜电位 V 和细胞内钙离子浓度Ca。通过适用于分岔问题的数值方法,确定了静态分岔图中的截面。对于一个可变的稳定去极化或超极化电流(I(st)),静态分岔图在(I(st),V)平面上的相应投影是复杂的,具有三个稳定解分支,由两个极限点连接。在上分支上可以发生振荡,当到达同宿鞍的不稳定流形时,要么在稳定焦点处阻尼,要么转向稳定的静止解的下分支,从而导致早期后除极(EAD)。中间分支是一系列不稳定的鞍点,而较低的分支是一系列稳定的节点。对于可变的慢内向和 K(+)电流最大电导(g(si)和 g(K)),在 0 到 4 倍正常值之间的范围内,动力学更加复杂,在某些情况下,会出现趋于极限环的持续振荡。所有这些类型的行为都被线性稳定性分析和分岔理论方法正确预测,导致识别出了 Hopf 分岔点、循环的极限点和倍周期分岔。在特定的设置中,例如 g(si)为正常的五分之一,可能会同时出现 EAD 和由于不稳定静息状态引起的持续高振幅振荡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验