IST Austria-Institute of Science and Technology Austria, Austria.
J Theor Biol. 2012 May 21;301:161-73. doi: 10.1016/j.jtbi.2012.02.021. Epub 2012 Feb 28.
We study evolutionary game theory in a setting where individuals learn from each other. We extend the traditional approach by assuming that a population contains individuals with different learning abilities. In particular, we explore the situation where individuals have different search spaces, when attempting to learn the strategies of others. The search space of an individual specifies the set of strategies learnable by that individual. The search space is genetically given and does not change under social evolutionary dynamics. We introduce a general framework and study a specific example in the context of direct reciprocity. For this example, we obtain the counter intuitive result that cooperation can only evolve for intermediate benefit-to-cost ratios, while small and large benefit-to-cost ratios favor defection. Our paper is a step toward making a connection between computational learning theory and evolutionary game dynamics.
我们在个体之间相互学习的环境中研究演化博弈论。我们通过假设群体中存在具有不同学习能力的个体来扩展传统方法。特别是,我们探讨了当个体在尝试学习他人策略时具有不同的搜索空间的情况。个体的搜索空间指定了可由该个体学习的策略集。搜索空间是遗传给定的,并且不会在社会进化动态下发生变化。我们引入了一个通用框架,并在直接互惠的背景下研究了一个具体的例子。对于这个例子,我们得到了一个违反直觉的结果,即合作只能在中等的收益-成本比下进化,而小的和大的收益-成本比则有利于背叛。我们的论文是朝着在计算学习理论和演化博弈动力学之间建立联系迈出的一步。