Suppr超能文献

理论进化博弈论的未来。

The future of theoretical evolutionary game theory.

机构信息

Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany.

Max Planck Research Group: Dynamics of Social Behavior, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2023 May 8;378(1876):20210508. doi: 10.1098/rstb.2021.0508. Epub 2023 Mar 20.

Abstract

Evolutionary game theory is a truly interdisciplinary subject that goes well beyond the limits of biology. Mathematical minds get hooked up in simple models for evolution and often gradually move into other parts of evolutionary biology or ecology. Social scientists realize how much they can learn from evolutionary thinking and gradually transfer insight that was originally generated in biology. Computer scientists can use their algorithms to explore a new field where machines not only learn from the environment, but also from each other. The breadth of the field and the focus on a few very popular issues, such as cooperation, comes at a price: several insights are re-discovered in different fields under different labels with different heroes and modelling traditions. For example, reciprocity or spatial structure are treated differently. Will we continue to develop things in parallel? Or can we converge to a single set of ideas, a single tradition and eventually a single software repository? Or will these fields continue to cross-fertilize each other, learning from each other and engaging in a constructive exchange between fields? Ultimately, the popularity of evolutionary game theory rests not only on its explanatory power, but also on the intuitive character of its models. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.

摘要

进化博弈论是一门真正的跨学科学科,远远超出了生物学的范围。数学思维者沉迷于简单的进化模型中,并且经常逐渐进入进化生物学或生态学的其他部分。社会科学家意识到他们可以从进化思维中学到很多东西,并逐渐将最初在生物学中产生的洞察力转移过来。计算机科学家可以使用他们的算法来探索一个新的领域,在这个领域中,机器不仅可以从环境中学习,还可以相互学习。该领域的广度和对几个非常流行的问题(例如合作)的关注是有代价的:在不同的领域中,以不同的标签、不同的英雄和不同的建模传统重新发现了几个见解。例如,互惠或空间结构的处理方式不同。我们将继续并行开发事物吗?或者我们能否收敛到一组单一的想法、单一的传统,并最终收敛到单个软件存储库?或者这些领域是否会继续相互促进,相互学习,并在领域之间进行建设性的交流?最终,进化博弈论的流行不仅取决于其解释力,还取决于其模型的直观性。本文是主题为“半个世纪的进化博弈论:理论、应用和未来方向的综合”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e18/10024985/b0d3bf8bd60d/rstb20210508f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验