Suppr超能文献

在 Pt(111)上的 H2O:第一层湿膜的结构和稳定性。

H2O on Pt(111): structure and stability of the first wetting layer.

机构信息

II Physikalisches Institut, Universität zu Köln, D-50937 Köln, Germany.

出版信息

J Phys Condens Matter. 2012 Mar 28;24(12):124103. doi: 10.1088/0953-8984/24/12/124103. Epub 2012 Mar 6.

Abstract

We study the structure and stability of the first water layer on Pt(111) by variable-temperature scanning tunneling microscopy. We find that a high Pt step edge density considerably increases the long-range order of the equilibrium √37 × √37R25.3°- and √39 × √39R16.1°-superstructures, presumably due to the capability of step edges to trap residual adsorbates from the surface. Passivating the step edges with CO or preparing a flat metal surface leads to the formation of disordered structures, which still show the same structural elements as the ordered ones. Coadsorption of Xe and CO proves that the water layer covers the metal surface completely. Moreover, we determine the two-dimensional crystal structure of Xe on top of the chemisorbed water layer which exhibits an Xe-Xe distance close to the one in bulk Xe and a rotation angle of 90° between the close-packed directions of Xe and the close-packed directions of the underlying water layer. CO is shown to replace H(2)O on the Pt(111) surface as has been deduced previously. In addition, we demonstrate that tunneling of electrons into the antibonding state or from the bonding state of H(2)O leads to dissociation of the molecules and a corresponding reordering of the adlayer into a √3 × √3R30°-structure. Finally, a so far not understood restructuring of the adlayer by an increased tunneling current has been observed.

摘要

我们通过变温扫描隧道显微镜研究了 Pt(111) 上第一层水的结构和稳定性。我们发现,高 Pt 台阶边缘密度极大地增加了平衡 √37×√37R25.3°和 √39×√39R16.1°超结构的长程有序性,可能是因为台阶边缘有捕获表面残留吸附物的能力。用 CO 钝化台阶边缘或制备平整的金属表面会导致无序结构的形成,这些结构仍然显示出与有序结构相同的结构元素。Xe 和 CO 的共吸附证明了水层完全覆盖了金属表面。此外,我们确定了吸附在化学吸附水层上的 Xe 的二维晶体结构,其表现出的 Xe-Xe 距离接近体相 Xe 的距离,以及 Xe 的密堆积方向与底层水层的密堆积方向之间的 90°旋转角度。如先前推断的那样,CO 被证明会取代 Pt(111)表面上的 H(2)O。此外,我们证明了电子隧穿到 H(2)O 的反键态或从成键态会导致分子的离解,以及吸附层重新有序成 √3×√3R30°结构。最后,我们观察到隧穿电流增加会导致吸附层的结构重组,这一点到目前为止还没有得到解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验