Lansford Joshua L, Vlachos Dionisios G
Department of Chemical Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE, 19716, USA.
Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, DE, 19716, USA.
Nat Commun. 2020 Mar 23;11(1):1513. doi: 10.1038/s41467-020-15340-7.
There is a need to characterize complex materials and their dynamics under reaction conditions to accelerate materials design. Adsorbate vibrational excitations are selective to adsorbate/surface interactions and infrared (IR) spectra associated with activating adsorbate vibrational modes are accurate, capture details of most modes, and can be obtained operando. Current interpretation depends on heuristic peak assignments for simple spectra, precluding the possibility of obtaining detailed structural information. Here, we combine data-based approaches with chemistry-dependent problem formulation to develop physics-driven surrogate models that generate synthetic IR spectra from first-principles calculations. Using synthetic IR spectra of carbon monoxide on platinum, we implement multinomial regression via neural network ensembles to learn probability distributions functions (pdfs) that describe adsorption sites and quantify uncertainty. We use these pdfs to infer detailed surface microstructure from experimental spectra and extend this methodology to other systems as a first step towards characterizing complex interfaces and closing the materials gap.
需要对复杂材料及其在反应条件下的动力学进行表征,以加速材料设计。吸附质振动激发对吸附质/表面相互作用具有选择性,与激活吸附质振动模式相关的红外(IR)光谱准确,能捕捉大多数模式的细节,并且可以在操作过程中获得。目前的解释依赖于对简单光谱的启发式峰归属,排除了获得详细结构信息的可能性。在这里,我们将基于数据的方法与依赖化学的问题表述相结合,以开发物理驱动的替代模型,该模型从第一性原理计算中生成合成红外光谱。利用一氧化碳在铂上的合成红外光谱,我们通过神经网络集成实现多项式回归,以学习描述吸附位点并量化不确定性的概率分布函数(pdf)。我们使用这些pdf从实验光谱中推断详细的表面微观结构,并将这种方法扩展到其他系统,作为表征复杂界面和弥合材料差距的第一步。