Suppr超能文献

巢式病例对照研究(无置换)。

Nested case-control sampling without replacement.

机构信息

Seoul National University, Seoul, Korea.

University of Maryland, College Park, Maryland, United States.

出版信息

Lifetime Data Anal. 2024 Oct;30(4):776-799. doi: 10.1007/s10985-024-09633-y. Epub 2024 Sep 5.

Abstract

Nested case-control design (NCC) is a cost-effective outcome-dependent design in epidemiology that collects all cases and a fixed number of controls at the time of case diagnosis from a large cohort. Due to inefficiency relative to full cohort studies, previous research developed various estimation methodologies but changing designs in the formulation of risk sets was considered only in view of potential bias in the partial likelihood estimation. In this paper, we study a modified design that excludes previously selected controls from risk sets in view of efficiency improvement as well as bias. To this end, we extend the inverse probability weighting method of Samuelsen which was shown to outperform the partial likelihood estimator in the standard setting. We develop its asymptotic theory and a variance estimation of both regression coefficients and the cumulative baseline hazard function that takes account of the complex feature of the modified sampling design. In addition to good finite sample performance of variance estimation, simulation studies show that the modified design with the proposed estimator is more efficient than the standard design. Examples are provided using data from NIH-AARP Diet and Health Cohort Study.

摘要

巢式病例对照设计(NCC)是一种在流行病学中具有成本效益的基于结局的设计,它在病例诊断时从一个大队列中收集所有病例和固定数量的对照。由于相对于全队列研究效率较低,以前的研究开发了各种估计方法,但仅考虑了风险集的设计变化,以避免偏倚在部分似然估计中。在本文中,我们研究了一种改进的设计,该设计考虑到效率提高和偏差,从风险集中排除先前选择的对照。为此,我们扩展了 Samuelsen 的逆概率加权方法,该方法在标准设置中表现优于部分似然估计。我们开发了它的渐近理论和回归系数以及累积基线风险函数的方差估计,这些都考虑到了修改后的抽样设计的复杂特征。除了方差估计的良好有限样本性能外,模拟研究表明,带有建议估计器的改进设计比标准设计更有效。使用 NIH-AARP 饮食与健康队列研究的数据提供了示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61a2/11502564/9e12e20bee13/10985_2024_9633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验