Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences, 1111 Budapest, Budafoki ut 8., Hungary.
ACS Nano. 2012 Apr 24;6(4):3411-23. doi: 10.1021/nn300440f. Epub 2012 Mar 26.
The break-junction technique is widely used to measure electronic properties of nanoscale junctions including metal point-contacts and single-molecule junctions. In these measurements, conductance is measured as a function of electrode displacement yielding data that is analyzed by constructing conductance histograms to determine the most frequently observed conductance values in the nanoscale junctions. However much of the rich physics in these measurements is lost in this simple analysis technique. Conductance histograms cannot be used to study the statistical relation of distinct junction configurations, to distinguish structurally different configurations that have similar conductance values, or to obtain information on the relation between conductance and junction elongation. Here, we give a detailed introduction to a novel statistical analysis method based on the two-dimensional cross-correlation histogram (2DCH) analysis of conductance traces and show that this method provides new information about the relation of different junction configurations that occur during the formation and evolution of metal and single-molecule junctions. We first illustrate the different types of correlation effects by using simulated conductance traces. We then apply this analysis method to several different experimental examples. We show from break-junction measurements of different metal point-contacts that in aluminum, the first conductance histogram peak corresponds to two different junction structures. In tantalum, we identify the frequent absence of adhesive instability. We show that conductance plateaus shift in a correlated manner in iron and vanadium junctions. Finally, we highlight the applicability of the correlation analysis to single-molecule platinum-CO-platinum and gold-4,4'-bipyridine-gold junctions.
断键技术被广泛用于测量纳米级结的电子特性,包括金属点接触和单分子结。在这些测量中,电导被测量为电极位移的函数,得到的数据通过构建电导直方图进行分析,以确定纳米级结中最常观察到的电导值。然而,这种简单的分析技术丢失了大量丰富的物理信息。电导直方图不能用于研究不同结构的统计关系,不能区分具有相似电导值的结构不同的构型,也不能获得关于电导与结伸长之间关系的信息。在这里,我们详细介绍了一种基于电导轨迹二维互相关直方图(2DCH)分析的新的统计分析方法,并表明该方法提供了关于金属和单分子结形成和演化过程中不同结结构关系的新信息。我们首先通过使用模拟电导轨迹来说明不同类型的相关效应。然后,我们将此分析方法应用于几个不同的实验示例。我们从不同金属点接触的断键测量中表明,在铝中,第一个电导直方图峰值对应于两种不同的结结构。在钽中,我们确定了经常不存在的粘附不稳定性。我们表明,铁和钒结中的电导平台以相关的方式移动。最后,我们强调了相关分析在单分子铂-CO-铂和金-4,4'-联吡啶-金结中的适用性。