Reimers Jeffrey R, Li Tiexin, Birvé André P, Yang Likun, Aragonès Albert C, Fallon Thomas, Kosov Daniel S, Darwish Nadim
International Centre for Quantum and Molecular Structures and the Department of Physics, Shanghai University, Shanghai, 200444, China.
School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia.
Nat Commun. 2023 Oct 3;14(1):6089. doi: 10.1038/s41467-023-41674-z.
Nanoscale electro-mechanical systems (NEMS) displaying piezoresistance offer unique measurement opportunities at the sub-cellular level, in detectors and sensors, and in emerging generations of integrated electronic devices. Here, we show a single-molecule NEMS piezoresistor that operates utilising constitutional and conformational isomerisation of individual diaryl-bullvalene molecules and can be switched at 850 Hz. Observations are made using scanning tunnelling microscopy break junction (STMBJ) techniques to characterise piezoresistance, combined with blinking (current-time) experiments that follow single-molecule reactions in real time. A kinetic Monte Carlo methodology (KMC) is developed to simulate isomerisation on the experimental timescale, parameterised using density-functional theory (DFT) combined with non-equilibrium Green's function (NEGF) calculations. Results indicate that piezoresistance is controlled by both constitutional and conformational isomerisation, occurring at rates that are either fast (equilibrium) or slow (non-equilibrium) compared to the experimental timescale. Two different types of STMBJ traces are observed, one typical of traditional experiments that are interpreted in terms of intramolecular isomerisation occurring on stable tipped-shaped metal-contact junctions, and another attributed to arise from junction‒interface restructuring induced by bullvalene isomerisation.
具有压阻特性的纳米级机电系统(NEMS)在亚细胞水平的探测器和传感器以及新一代集成电子设备中提供了独特的测量机会。在此,我们展示了一种单分子NEMS压阻器,它利用单个二芳基牛瓦烯分子的结构和构象异构化来工作,并且可以在850赫兹下切换。使用扫描隧道显微镜断接结(STMBJ)技术进行观测以表征压阻,同时结合实时跟踪单分子反应的闪烁(电流-时间)实验。开发了一种动力学蒙特卡罗方法(KMC)来模拟实验时间尺度上的异构化,使用密度泛函理论(DFT)结合非平衡格林函数(NEGF)计算进行参数化。结果表明,压阻由结构和构象异构化共同控制,与实验时间尺度相比,异构化速率有快(平衡)有慢(非平衡)。观察到两种不同类型的STMBJ轨迹,一种是传统实验中的典型轨迹,可根据在稳定的尖端形金属接触结上发生的分子内异构化来解释,另一种则归因于牛瓦烯异构化引起的结-界面重组。