Benedict C R, Lu J L, Pettigrew D W, Liu J, Stipanovic R D, Williams H J
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA.
Plant Physiol. 2001 Apr;125(4):1754-65. doi: 10.1104/pp.125.4.1754.
The first step in the conversion of the isoprenoid intermediate, farnesyl diphosphate (FDP), to sesquiterpene phytoalexins in cotton (Gossypium barbadense) plants is catalyzed by delta-cadinene (CDN) synthase. CDN is the precursor of desoxyhemigossypol and hemigossypol defense sesquiterpenes. In this paper we have studied the mechanism for the cyclization of FDP and the putative intermediate, nerolidyl diphosphate, to CDN. A purified recombinant CDN synthase (CDN1-C1) expressed in Escherichia coli from CDN1-C1 cDNA isolated from Gossypium arboreum cyclizes (1RS)-[1-2H](E, E)-FDP to >98% [5-2H]and [11-2H]CDN. Enzyme reaction mixtures cyclize (3RS)-[4,4,13,13,13-2H5]-nerolidyl diphosphate to 62.1% [8,8,15,15,15-2H5]-CDN, 15.8% [6,6,15,15,15-2H5]-alpha-bisabolol, 8.1% [6,6,15,15,15-2H5]-(beta)-bisabolene, 9.8% [4,4,13,13-2H4]-(E)-beta-farnesene, and 4.2% unknowns. Competitive studies show that (3R)-nerolidyl diphosphate is the active enantiomer of (3RS)-nerolidyl diphosphate that cyclized to CDN. The kcat/Km values demonstrate that the synthase uses (E,E)-FDP as effectively as (3R)-nerolidyl diphosphate in the formation of CDN. Cyclization studies with (3R)-nerolidyl diphosphate show that the formation of CDN, (E)-beta-farnesene, and beta-bisabolene are enzyme dependent, but the formation of alpha-bisabolol in the reaction mixtures was a Mg2+-dependent solvolysis of nerolidyl diphosphate. Enzyme mechanisms are proposed for the formation of CDN from (E,E)-FDP and for the formation of CDN, (E)-beta-farnesene, and beta-bisabolene from (3RS)-nerolidyl diphosphate. The primary structures of cotton CDN synthase and tobacco epi-aristolochene synthase show 48% identity, suggesting similar three-dimensional structures. We used the SWISS-MODEL to test this. The two enzymes have the same overall structure consisting of two alpha-helical domains and epi-aristolochene synthase is a good model for the structure of CDN synthase. Several amino acids in the primary structures of both synthases superimpose. The amino acids having catalytic roles in epi-aristochene synthase are substituted in the CDN synthase and may be related to differences in catalytic properties.
在棉花(海岛棉)植株中,类异戊二烯中间体法尼基二磷酸(FDP)转化为倍半萜植保素的第一步反应由δ-杜松烯(CDN)合酶催化。CDN是脱氧半棉酚和半棉酚防御倍半萜的前体。在本文中,我们研究了FDP以及假定的中间体橙花叔基二磷酸环化生成CDN的机制。从陆地棉分离得到的CDN1 - C1 cDNA在大肠杆菌中表达的纯化重组CDN合酶(CDN1 - C1)可将(1RS)-[1-2H](E, E)-FDP环化生成>98%的[5-2H]和[11-2H]CDN。酶反应混合物可将(3RS)-[4,4,13,13,13-2H5]-橙花叔基二磷酸环化生成62.1%的[8,8,15,15,15-2H5]-CDN、15.8%的[6,6,15,15,15-2H5]-α-红没药醇、8.1%的[6,6,15,15,15-2H5]-β-没药烯、9.8%的[4,4,13,13-2H4]-(E)-β-法尼烯以及4.2%的未知产物。竞争性研究表明,(3R)-橙花叔基二磷酸是(3RS)-橙花叔基二磷酸环化生成CDN的活性对映体。kcat/Km值表明,在生成CDN的过程中,该合酶对(E, E)-FDP和(3R)-橙花叔基二磷酸的利用效率相同。对(3R)-橙花叔基二磷酸的环化研究表明,CDN、(E)-β-法尼烯和β-没药烯的生成依赖于酶,但反应混合物中α-红没药醇的生成是橙花叔基二磷酸的Mg2+依赖性溶剂解反应。本文提出了由(E, E)-FDP生成CDN以及由(3RS)-橙花叔基二磷酸生成CDN、(E)-β-法尼烯和β-没药烯的酶促机制。棉花CDN合酶和烟草表-马兜铃烯合酶的一级结构显示出48%的同一性,表明它们具有相似的三维结构。我们使用SWISS-MODEL对此进行了验证。这两种酶具有相同的整体结构,均由两个α-螺旋结构域组成,表-马兜铃烯合酶是CDN合酶结构的良好模型。两种合酶一级结构中的几个氨基酸相互重叠。在表-马兜铃烯合酶中具有催化作用的氨基酸在CDN合酶中被取代,这可能与催化特性的差异有关。