Center for Vascular and Inflammatory Diseases and the Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States.
Biochemistry. 2012 Mar 27;51(12):2526-38. doi: 10.1021/bi2017848. Epub 2012 Mar 15.
Our previous studies revealed that the fibrinogen αC-domains undergo conformational changes and adopt a physiologically active conformation upon their self-association into αC polymers in fibrin. In the present study, we analyzed the mechanism of αC polymer formation and tested our hypothesis that self-association of the αC-domains occurs through the interaction between their N-terminal subdomains and may include β-hairpin swapping. Our binding experiments performed by size-exclusion chromatography and optical trap-based force spectroscopy revealed that the αC-domains self-associate exclusively through their N-terminal subdomains, while their C-terminal subdomains were found to interact with the αC-connectors that tether the αC-domains to the bulk of the molecule. This interaction should reinforce the structure of αC polymers and provide the proper orientation of their reactive residues for efficient cross-linking by factor XIIIa. Molecular modeling of self-association of the N-terminal subdomains confirmed that the hypothesized β-hairpin swapping does not impose any steric hindrance. To "freeze" the conformation of the N-terminal subdomain and prevent the hypothesized β-hairpin swapping, we introduced by site-directed mutagenesis an extra disulfide bond between two β-hairpins of the bovine Aα406-483 fragment corresponding to this subdomain. The experiments performed by circular dichroism revealed that Aα406-483 mutant containing Lys429Cys/Thr463Cys mutations preserved its β-sheet structure. However, in contrast to wild-type Aα406-483, this mutant had lower tendency for oligomerization, and its structure was not stabilized upon oligomerization, in agreement with the above hypothesis. On the basis of the results obtained and our previous findings, we propose a model of fibrin αC polymer structure and molecular mechanism of assembly.
我们之前的研究表明,纤维蛋白原 αC 结构域在自身聚合形成 αC 聚合物时会发生构象变化,并呈现出生理活性构象。在本研究中,我们分析了 αC 聚合物形成的机制,并验证了我们的假设,即 αC 结构域的自组装是通过它们的 N 端亚结构域之间的相互作用发生的,并且可能包括 β 发夹交换。我们通过大小排阻色谱和基于光阱的力谱学进行的结合实验表明,αC 结构域仅通过它们的 N 端亚结构域自组装,而它们的 C 端亚结构域被发现与将 αC 结构域连接到分子主体的 αC 接头相互作用。这种相互作用应该加强 αC 聚合物的结构,并为其反应性残基的有效交联提供正确的取向因子 XIIIa。N 端亚结构域自组装的分子建模证实,假设的 β 发夹交换不会造成任何空间位阻。为了“冻结”N 端亚结构域的构象并防止假设的 β 发夹交换,我们通过定点突变在牛 Aα406-483 片段的两个 β 发夹之间引入了一个额外的二硫键,该片段对应于这个亚结构域。圆二色性实验表明,含有 Lys429Cys/Thr463Cys 突变的 Aα406-483 突变体保留了其β-折叠结构。然而,与野生型 Aα406-483 相比,该突变体的寡聚化倾向较低,并且其结构在寡聚化后不稳定,这与上述假设一致。基于获得的结果和我们之前的发现,我们提出了纤维蛋白原 αC 聚合物结构和组装分子机制的模型。