Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.
Department of Chemistry, East Carolina University, Greenville, North Carolina, USA.
J Thromb Haemost. 2023 Jun;21(6):1529-1543. doi: 10.1016/j.jtha.2023.01.034. Epub 2023 Feb 4.
Fibrinogen is a soluble, multisubunit, and multidomain dimeric protein, which, upon its proteolytic cleavage by thrombin, is converted to insoluble fibrin, initiating polymerization that substantially contributes to clot growth. Fibrinogen contains numerous, transiently accessible "cryptic" epitopes for hemostatic and immunologic proteins, suggesting that fibrinogen exhibits conformational flexibility, which may play functional roles in its temporal and spatial interactions. Hitherto, there have been limited integrative approaches characterizing the solution structure and internal flexibility of fibrinogen.
Here, utilizing a multipronged, biophysical approach involving 2 solution-based techniques, temperature-dependent hydrogen-deuterium exchange mass spectrometry and small angle X-ray scattering, corroborated by negative stain electron microscopy, we present a holistic, conformationally dynamic model of human fibrinogen in solution.
Our data reveal 4 major and distinct conformations of fibrinogen accommodated by a high degree of internal protein flexibility along its central scaffold. We propose that the fibrinogen structure in the solution consists of a complex, conformational landscape with multiple local minima. This is further supported by the location of numerous point mutations that are linked to dysfibrinogenemia and posttranslational modifications, residing near the identified fibrinogen flexions.
This work provides a molecular basis for the structural "dynamism" of fibrinogen that is expected to influence the broad swath of its functionally diverse macromolecular interactions and fine-tune the structural and mechanical properties of blood clots.
纤维蛋白原为可溶性、多亚基和多结构域二聚体蛋白,其在凝血酶的蛋白水解切割作用下被转化为不溶性纤维蛋白,引发聚合,从而大大促进血栓的生长。纤维蛋白原含有许多暂时可及的“隐蔽”止血和免疫蛋白表位,这表明纤维蛋白原表现出构象灵活性,这可能在其时空相互作用中发挥功能作用。迄今为止,对纤维蛋白原的溶液结构和内部灵活性进行综合特征描述的方法有限。
在这里,我们利用涉及 2 种基于溶液的技术(温度依赖性氘氢交换质谱和小角 X 射线散射)的多方面生物物理方法,结合负染色电子显微镜,提出了人纤维蛋白原在溶液中的整体、构象动态模型。
我们的数据揭示了纤维蛋白原的 4 种主要且不同的构象,其内部蛋白质柔韧性很高,沿其中心支架。我们提出纤维蛋白原在溶液中的结构由具有多个局部最小值的复杂构象景观组成。这进一步得到了位于鉴定出的纤维蛋白原弯曲部位附近的许多与纤维蛋白原血症和翻译后修饰相关的点突变的支持。
这项工作为纤维蛋白原的结构“动态性”提供了分子基础,预计这将影响其广泛的功能多样的大分子相互作用,并微调血栓的结构和机械性能。