Suppr超能文献

风险预测模型:I. 新(生物)标志物的开发、内部验证和增量价值评估。

Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker.

机构信息

Julius Center for Health Sciences and Primary Care, UMC Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.

出版信息

Heart. 2012 May;98(9):683-90. doi: 10.1136/heartjnl-2011-301246. Epub 2012 Mar 7.

Abstract

Prediction models are increasingly used to complement clinical reasoning and decision making in modern medicine in general, and in the cardiovascular domain in particular. Developed models first and foremost need to provide accurate and (internally and externally) validated estimates of probabilities of specific health conditions or outcomes in targeted patients. The adoption of such models must guide physician's decision making and an individual's behaviour, and consequently improve individual outcomes and the cost-effectiveness of care. In a series of two articles we review the consecutive steps generally advocated for risk prediction model research. This first article focuses on the different aspects of model development studies, from design to reporting, how to estimate a model's predictive performance and the potential optimism in these estimates using internal validation techniques, and how to quantify the added or incremental value of new predictors or biomarkers (of whatever type) to existing predictors. Each step is illustrated with empirical examples from the cardiovascular field.

摘要

预测模型越来越多地被用于补充现代医学(特别是心血管领域)中的临床推理和决策。开发的模型首先需要提供针对特定患者的特定健康状况或结果的概率的准确且(内部和外部)经过验证的估计。采用此类模型必须指导医生的决策和个人的行为,从而改善个人的结果和医疗保健的成本效益。在一系列两篇文章中,我们回顾了风险预测模型研究通常提倡的连续步骤。本文重点介绍模型开发研究的不同方面,从设计到报告,如何使用内部验证技术估算模型的预测性能和这些估计中的潜在乐观性,以及如何量化新预测因子或生物标志物(无论何种类型)对现有预测因子的附加或增量价值。每个步骤都用来自心血管领域的实证示例进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验