Sun Wei, Martin Caitlin, Pham Thuy
Tissue Mechanics Lab, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30313; email:
Annu Rev Biomed Eng. 2014 Jul 11;16:53-76. doi: 10.1146/annurev-bioeng-071813-104517. Epub 2014 Apr 16.
In the past two decades, major advances have been made in the clinical evaluation and treatment of valvular heart disease owing to the advent of noninvasive cardiac imaging modalities. In clinical practice, valvular disease evaluation is typically performed on two-dimensional (2D) images, even though most imaging modalities offer three-dimensional (3D) volumetric, time-resolved data. Such 3D data offer researchers the possibility to reconstruct the 3D geometry of heart valves at a patient-specific level. When these data are integrated with computational models, native heart valve biomechanical function can be investigated, and preoperative planning tools can be developed. In this review, we outline the advances in valve geometry reconstruction, tissue property modeling, and loading and boundary definitions for the purpose of realistic computational structural analysis of cardiac valve function and intervention.
在过去二十年中,由于无创心脏成像技术的出现,心脏瓣膜病的临床评估和治疗取得了重大进展。在临床实践中,尽管大多数成像技术都能提供三维(3D)容积、时间分辨数据,但瓣膜病评估通常是在二维(2D)图像上进行的。这些3D数据为研究人员提供了在患者个体水平上重建心脏瓣膜三维几何形状的可能性。当这些数据与计算模型相结合时,就可以研究天然心脏瓣膜的生物力学功能,并开发术前规划工具。在本综述中,我们概述了瓣膜几何形状重建、组织特性建模以及加载和边界定义方面的进展,目的是对心脏瓣膜功能和干预进行逼真的计算结构分析。