Gendelman O V, Shvartsman R, Madar B, Savin A V
Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011105. doi: 10.1103/PhysRevE.85.011105. Epub 2012 Jan 3.
The paper investigates nonstationary heat conduction in one-dimensional models with substrate potential. To establish universal characteristic properties of the process, we explore three different models: Frenkel-Kontorova (FK), phi4+ (φ(4)+), and phi4- (φ(4)-). Direct numeric simulations reveal in all these models a crossover from oscillatory decay of short-wave perturbations of the temperature field to smooth diffusive decay of the long-wave perturbations. Such behavior is inconsistent with the parabolic Fourier equation of heat conduction and clearly demonstrates the necessity for hyperbolic corrections in the phenomenological description of the heat conduction process. The crossover wavelength decreases with an increase in the average temperature. The decay patterns of the temperature field almost do not depend on the amplitude of the perturbations, so the use of linear evolution equations for the temperature field is justified. In all models investigated, the relaxation of thermal perturbations is exponential, contrary to a linear chain, where it follows a power law. The most popular lowest-order hyperbolic generalization of the Fourier law, known as the Cattaneo-Vernotte or telegraph equation, is also not valid for the description of the observed behavior of the models with the substrate potential, since the characteristic relaxation time in an oscillatory regime strongly depends on the excitation wavelength. For some of the models, this dependence seems to obey a simple scaling law.
本文研究了具有衬底势的一维模型中的非稳态热传导。为了确定该过程的普遍特征性质,我们探索了三种不同的模型:弗伦克尔 - 康托洛娃(FK)模型、φ4 +(φ(4)+)模型和φ4 -(φ(4)-)模型。直接数值模拟表明,在所有这些模型中,温度场的短波扰动从振荡衰减转变为长波扰动的平滑扩散衰减。这种行为与热传导的抛物型傅里叶方程不一致,清楚地表明在热传导过程的唯象描述中进行双曲修正的必要性。交叉波长随着平均温度的升高而减小。温度场的衰减模式几乎不依赖于扰动的幅度,因此使用温度场的线性演化方程是合理的。在所有研究的模型中,热扰动的弛豫是指数形式的,这与线性链中遵循幂律的情况相反。傅里叶定律最流行的最低阶双曲推广,即卡塔尼奥 - 韦尔诺特方程或电报方程,对于描述具有衬底势的模型的观测行为也无效,因为振荡区域中的特征弛豫时间强烈依赖于激发波长。对于某些模型,这种依赖性似乎遵循一个简单的标度律。