Suppr超能文献

关于具有卡塔尼奥 - 克里斯托夫双曲热流模型的振荡对流。

On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model.

作者信息

Bissell J J

机构信息

Department of Mathematical Sciences , University of Durham , Durham City DH1 3LE, UK.

出版信息

Proc Math Phys Eng Sci. 2015 Mar 8;471(2175):20140845. doi: 10.1098/rspa.2014.0845.

Abstract

Adoption of the hyperbolic Cattaneo-Christov heat-flow model in place of the more usual parabolic Fourier law is shown to raise the possibility of oscillatory convection in the classic Bénard problem of a Boussinesq fluid heated from below. By comparing the critical Rayleigh numbers for stationary and oscillatory convection, and respectively, oscillatory convection is found to represent the preferred form of instability whenever the Cattaneo number exceeds a threshold value ≥8/27≈0.03. In the case of free boundaries, analytical approaches permit direct treatment of the role played by the Prandtl number [Formula: see text], which-in contrast to the classical stationary scenario-can impact on oscillatory modes significantly owing to the non-zero frequency of convection. Numerical investigation indicates that the behaviour found analytically for free boundaries applies in a qualitatively similar fashion for fixed boundaries, while the threshold Cattaneo number is computed as a function of [Formula: see text] for both boundary regimes.

摘要

结果表明,采用双曲型卡塔尼奥 - 克里斯托夫热流模型取代更为常用的抛物型傅里叶定律,会增加在经典的从下方加热的布辛涅斯克流体的贝纳德问题中出现振荡对流的可能性。通过分别比较稳态对流和振荡对流的临界瑞利数,发现只要卡塔尼奥数超过阈值≥8/27≈0.03,振荡对流就会成为首选的不稳定性形式。在自由边界的情况下,解析方法可以直接处理普朗特数[公式:见正文]所起的作用,与经典的稳态情况不同,由于对流频率不为零,普朗特数会对振荡模式产生显著影响。数值研究表明,对于自由边界通过解析方法得到的结果在定性上以类似方式适用于固定边界,同时针对两种边界情况计算了阈值卡塔尼奥数作为[公式:见正文]的函数。

相似文献

1
On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model.
Proc Math Phys Eng Sci. 2015 Mar 8;471(2175):20140845. doi: 10.1098/rspa.2014.0845.
2
Thermal convection in a magnetized conducting fluid with the Cattaneo-Christov heat-flow model.
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160649. doi: 10.1098/rspa.2016.0649.
3
Onset of Soret-induced convection in a horizontal layer of ternary fluid with fixed vertical heat flux at the boundaries.
Eur Phys J E Soft Matter. 2017 Feb;40(2):15. doi: 10.1140/epje/i2017-11505-9. Epub 2017 Feb 14.
4
The convective instability of a Maxwell-Cattaneo fluid in the presence of a vertical magnetic field.
Proc Math Phys Eng Sci. 2020 Sep;476(2241):20200494. doi: 10.1098/rspa.2020.0494. Epub 2020 Sep 30.
5
Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation.
Phys Rev E. 2016 Jul;94(1-1):013108. doi: 10.1103/PhysRevE.94.013108. Epub 2016 Jul 14.
6
Cattaneo-Christov heat flux (CC model) in mixed convective stagnation point flow towards a Riga plate.
Comput Methods Programs Biomed. 2020 Nov;196:105564. doi: 10.1016/j.cmpb.2020.105564. Epub 2020 Jun 2.
7
Classical 1/3 scaling of convection holds up to Ra = 10.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7594-7598. doi: 10.1073/pnas.1922794117. Epub 2020 Mar 25.
8
Bounds on heat flux for Rayleigh-Bénard convection between Navier-slip fixed-temperature boundaries.
Philos Trans A Math Phys Eng Sci. 2022 Jun 13;380(2225):20210025. doi: 10.1098/rsta.2021.0025. Epub 2022 Apr 25.
10
Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet.
PLoS One. 2016 Apr 19;11(4):e0153481. doi: 10.1371/journal.pone.0153481. eCollection 2016.

引用本文的文献

1
The convective instability of a Maxwell-Cattaneo fluid in the presence of a vertical magnetic field.
Proc Math Phys Eng Sci. 2020 Sep;476(2241):20200494. doi: 10.1098/rspa.2020.0494. Epub 2020 Sep 30.
2
Thermal convection in a magnetized conducting fluid with the Cattaneo-Christov heat-flow model.
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160649. doi: 10.1098/rspa.2016.0649.

本文引用的文献

1
Rayleigh-Bénard convection with uniform vertical magnetic field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):033002. doi: 10.1103/PhysRevE.90.033002. Epub 2014 Sep 5.
2
Heat transport in the geostrophic regime of rotating Rayleigh-Bénard convection.
Phys Rev Lett. 2014 Sep 12;113(11):114301. doi: 10.1103/PhysRevLett.113.114301. Epub 2014 Sep 8.
3
Natural convection of a two-dimensional Boussinesq fluid does not maximize entropy production.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):023014. doi: 10.1103/PhysRevE.90.023014. Epub 2014 Aug 21.
4
Geometry effects on Rayleigh-Bénard convection in rotating annular layers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):063013. doi: 10.1103/PhysRevE.89.063013. Epub 2014 Jun 23.
5
Nonstationary heat conduction in one-dimensional models with substrate potential.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011105. doi: 10.1103/PhysRevE.85.011105. Epub 2012 Jan 3.
6
Analytical thermal-optic model for laser heating of biological tissue using the hyperbolic heat transfer equation.
Math Med Biol. 2009 Sep;26(3):187-200. doi: 10.1093/imammb/dqp002. Epub 2009 Feb 20.
7
Effect of the thermal wave in radiofrequency ablation modeling: an analytical study.
Phys Med Biol. 2008 Mar 7;53(5):1447-62. doi: 10.1088/0031-9155/53/5/018. Epub 2008 Feb 19.
8
Heat conduction paradox involving second-sound propagation in moving media.
Phys Rev Lett. 2005 Apr 22;94(15):154301. doi: 10.1103/PhysRevLett.94.154301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验