Bissell J J
Department of Mathematical Sciences , University of Durham , Durham City DH1 3LE, UK.
Proc Math Phys Eng Sci. 2015 Mar 8;471(2175):20140845. doi: 10.1098/rspa.2014.0845.
Adoption of the hyperbolic Cattaneo-Christov heat-flow model in place of the more usual parabolic Fourier law is shown to raise the possibility of oscillatory convection in the classic Bénard problem of a Boussinesq fluid heated from below. By comparing the critical Rayleigh numbers for stationary and oscillatory convection, and respectively, oscillatory convection is found to represent the preferred form of instability whenever the Cattaneo number exceeds a threshold value ≥8/27≈0.03. In the case of free boundaries, analytical approaches permit direct treatment of the role played by the Prandtl number [Formula: see text], which-in contrast to the classical stationary scenario-can impact on oscillatory modes significantly owing to the non-zero frequency of convection. Numerical investigation indicates that the behaviour found analytically for free boundaries applies in a qualitatively similar fashion for fixed boundaries, while the threshold Cattaneo number is computed as a function of [Formula: see text] for both boundary regimes.
结果表明,采用双曲型卡塔尼奥 - 克里斯托夫热流模型取代更为常用的抛物型傅里叶定律,会增加在经典的从下方加热的布辛涅斯克流体的贝纳德问题中出现振荡对流的可能性。通过分别比较稳态对流和振荡对流的临界瑞利数,发现只要卡塔尼奥数超过阈值≥8/27≈0.03,振荡对流就会成为首选的不稳定性形式。在自由边界的情况下,解析方法可以直接处理普朗特数[公式:见正文]所起的作用,与经典的稳态情况不同,由于对流频率不为零,普朗特数会对振荡模式产生显著影响。数值研究表明,对于自由边界通过解析方法得到的结果在定性上以类似方式适用于固定边界,同时针对两种边界情况计算了阈值卡塔尼奥数作为[公式:见正文]的函数。