Argolo C, Quintino Yan, Gleria Iram, Lyra M L
Instituto Federal de Ciência e Tecnologia do Estado de Alagoas, 57020-510 Maceió, Alagoas, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011111. doi: 10.1103/PhysRevE.85.011111. Epub 2012 Jan 5.
We study the critical short-time dynamical behavior of a one-dimensional model where diffusive individuals can infect a static population upon contact. The model presents an absorbing phase transition from an active to an inactive state. Previous calculations of the critical exponents based on quasistationary quantities have indicated an unusual crossover from the directed percolation to the diffusive contact process universality classes. Here we show that the critical exponents governing the slow short-time dynamic evolution of several relevant quantities, including the order parameter, its relative fluctuations, and correlation function, reinforce the lack of universality in this model. Accurate estimates show that the critical exponents are distinct in the regimes of low and high recovery rates.
我们研究了一个一维模型的临界短时间动力学行为,在该模型中,扩散个体在接触时可感染静态群体。该模型呈现出从活跃状态到非活跃状态的吸收相变。先前基于准静态量对临界指数的计算表明,存在从定向渗流到扩散接触过程普适类的异常交叉。在此我们表明,控制几个相关量(包括序参量、其相对涨落和关联函数)的缓慢短时间动态演化的临界指数,强化了该模型中缺乏普适性的情况。精确估计表明,临界指数在低恢复率和高恢复率 regime 中是不同的。