da Silva M B, Macedo-Filho A, Albuquerque E L, Serva M, Lyra M L, Fulco U L
Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, Rio Grande do Norte, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062108. doi: 10.1103/PhysRevE.87.062108. Epub 2013 Jun 6.
We introduce a superdiffusive one-dimensional epidemic process model on which infection spreads through a contact process. Healthy (A) and infected (B) individuals can jump with distinct probabilities D(A) and D(B) over a distance ℓ distributed according to a power-law probability P(ℓ)[proportionality]1/ℓ(μ). For μ≥3 the propagation is equivalent to diffusion, while μ<3 corresponds to Lévy flights. In the D(A)>D(B) diffusion regime, field-theoretical results have suggested a first-order transition, a prediction not supported by several numerical studies. An extensive numerical study of the critical behavior in both the diffusive (μ≥3) and superdiffusive (μ<3) D(A)>D(B) regimes is also reported. We employed a finite-size scaling analysis to obtain the critical point as well as the static and dynamic critical exponents for several values of μ. All data support a second-order phase transition with continuously varying critical exponents which do not belong to the directed percolation universality class.
我们引入了一种超扩散一维流行病过程模型,其中感染通过接触过程传播。健康个体(A)和感染个体(B)能够以不同的概率D(A)和D(B)在按照幂律概率P(ℓ)[正比于]1/ℓ(μ)分布的距离ℓ上跳跃。对于μ≥3,传播等同于扩散,而μ<3则对应于列维飞行。在D(A)>D(B)的扩散区域,场论结果表明存在一阶相变,但这一预测未得到多项数值研究的支持。本文还报告了对扩散(μ≥3)和超扩散(μ<3)且D(A)>D(B)区域中临界行为的广泛数值研究。我们采用有限尺寸标度分析来获取临界点以及针对多个μ值的静态和动态临界指数。所有数据均支持具有连续变化的临界指数的二阶相变,这些临界指数不属于有向渗流普适类。