Suppr超能文献

Claudin-17 形成具有独特阴离子选择性的紧密连接通道。

Claudin-17 forms tight junction channels with distinct anion selectivity.

机构信息

Institute of Clinical Physiology, Campus Benjamin Franklin, Charité, Freie Universität and Humboldt Universität, Hindenburgdamm 30, 12203 Berlin, Germany.

出版信息

Cell Mol Life Sci. 2012 Aug;69(16):2765-78. doi: 10.1007/s00018-012-0949-x. Epub 2012 Mar 9.

Abstract

Barrier properties of tight junctions are determined by the claudin protein family. Many claudins seal this barrier, but others form paracellular channels. Among these, no claudins with general and clear-cut anion selectivity have yet been described, while for claudin-10a and claudin-4, only circumstantial or small anion selectivities have been shown. A claudin with unknown function and tissue distribution is claudin-17. We characterized claudin-17 by overexpression and knock-down in two renal cell lines. Overexpression in MDCK C7 cell layers caused a threefold increase in paracellular anion permeability and switched these cells from cation- to anion-selective. Knockdown in LLC-PK(1) cells indorsed the finding of claudin-17-based anion channels. Mutagenesis revealed that claudin-17 anion selectivity critically depends on a positive charge at position 65. Claudin-17 expression was found in two organs: marginal in brain but abundant in kidney, where expression was intense in proximal tubules and gradually decreased towards distal segments. As claudin-17 is predominantly expressed in proximal nephrons, which exhibit substantial, though molecularly not defined, paracellular chloride reabsorption, we suggest that claudin-17 has a unique physiological function in this process. In conclusion, claudin-17 forms channels within tight junctions with distinct anion preference.

摘要

紧密连接的屏障特性由紧密连接蛋白家族决定。许多紧密连接蛋白封闭了这个屏障,但其他的则形成了细胞旁通道。在这些通道中,尚未有具有普遍和明确阴离子选择性的紧密连接蛋白被描述,而对于紧密连接蛋白-10a 和紧密连接蛋白-4,仅显示出间接或较小的阴离子选择性。一种功能和组织分布未知的紧密连接蛋白是紧密连接蛋白-17。我们通过在两种肾细胞系中的过表达和敲低来对紧密连接蛋白-17 进行了表征。在 MDCK C7 细胞层中的过表达导致细胞旁阴离子通透性增加了三倍,并使这些细胞从阳离子选择性转变为阴离子选择性。在 LLC-PK(1)细胞中的敲低证实了基于紧密连接蛋白-17 的阴离子通道的存在。突变分析表明,紧密连接蛋白-17 的阴离子选择性严重依赖于位置 65 上的正电荷。紧密连接蛋白-17 在两个器官中表达:在脑的边缘,但在肾中丰富,在近端肾小管中表达强烈,并逐渐向远端段减少。由于紧密连接蛋白-17 主要在具有大量但分子上未定义的细胞旁氯离子重吸收的近端肾单位中表达,我们推测紧密连接蛋白-17 在这个过程中具有独特的生理功能。总之,紧密连接蛋白-17 在紧密连接中形成具有明显阴离子偏好的通道。

相似文献

1
Claudin-17 forms tight junction channels with distinct anion selectivity.
Cell Mol Life Sci. 2012 Aug;69(16):2765-78. doi: 10.1007/s00018-012-0949-x. Epub 2012 Mar 9.
2
Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins.
Am J Physiol Renal Physiol. 2003 Dec;285(6):F1078-84. doi: 10.1152/ajprenal.00116.2003. Epub 2003 Sep 16.
3
Charge-selective claudin channels.
Ann N Y Acad Sci. 2012 Jun;1257:20-8. doi: 10.1111/j.1749-6632.2012.06555.x.
4
Claudin-10a Deficiency Shifts Proximal Tubular Cl Permeability to Cation Selectivity Claudin-2 Redistribution.
J Am Soc Nephrol. 2022 Apr;33(4):699-717. doi: 10.1681/ASN.2021030286. Epub 2022 Jan 14.
5
Tight junctions of the proximal tubule and their channel proteins.
Pflugers Arch. 2017 Aug;469(7-8):877-887. doi: 10.1007/s00424-017-2001-3. Epub 2017 Jun 9.
6
Combinatorial expression of claudins in the proximal renal tubule and its functional consequences.
Am J Physiol Renal Physiol. 2020 May 1;318(5):F1138-F1146. doi: 10.1152/ajprenal.00057.2019. Epub 2020 Mar 16.
7
Renal localization and function of the tight junction protein, claudin-19.
Am J Physiol Renal Physiol. 2007 Jul;293(1):F166-77. doi: 10.1152/ajprenal.00087.2007. Epub 2007 Mar 27.
8
Study of claudin function by RNA interference.
J Biol Chem. 2006 Nov 24;281(47):36117-23. doi: 10.1074/jbc.M608853200. Epub 2006 Oct 3.
9
Claudin-18 Loss Alters Transcellular Chloride Flux but not Tight Junction Ion Selectivity in Gastric Epithelial Cells.
Cell Mol Gastroenterol Hepatol. 2021;11(3):783-801. doi: 10.1016/j.jcmgh.2020.10.005. Epub 2020 Oct 16.
10
Role of claudins in renal calcium handling.
Nefrologia. 2015;35(4):347-52. doi: 10.1016/j.nefro.2015.06.011. Epub 2015 Jul 22.

引用本文的文献

1
Paired and solitary ionocytes in the zebrafish olfactory epithelium.
Chem Senses. 2025 Jan 22;50. doi: 10.1093/chemse/bjaf031.
2
Biophysical basis of tight junction barrier modulation by a pan-claudin-binding molecule.
PNAS Nexus. 2025 Jun 6;4(6):pgaf189. doi: 10.1093/pnasnexus/pgaf189. eCollection 2025 Jun.
3
Disruption of mc1r Disturbs Skin Pigmentation in Xenopus tropicalis.
Pigment Cell Melanoma Res. 2025 Jul;38(4):e70033. doi: 10.1111/pcmr.70033.
4
Claudin-17 Deficiency Drives Vascular Permeability and Inflammation Causing Lung Injury.
Int J Mol Sci. 2025 Apr 11;26(8):3612. doi: 10.3390/ijms26083612.
5
Ion and water permeation through claudin-10b and claudin-15 paracellular channels.
Comput Struct Biotechnol J. 2024 Nov 13;23:4177-4191. doi: 10.1016/j.csbj.2024.11.025. eCollection 2024 Dec.
6
Paired and solitary ionocytes in the zebrafish olfactory epithelium.
bioRxiv. 2025 Jul 1:2024.11.08.620918. doi: 10.1101/2024.11.08.620918.
9
Biophysics of claudin proteins in tight junction architecture: Three decades of progress.
Biophys J. 2024 Aug 20;123(16):2363-2378. doi: 10.1016/j.bpj.2024.06.010. Epub 2024 Jun 10.
10
Claudins in Cancer: A Current and Future Therapeutic Target.
Int J Mol Sci. 2024 Apr 24;25(9):4634. doi: 10.3390/ijms25094634.

本文引用的文献

1
Predicted expansion of the claudin multigene family.
FEBS Lett. 2011 Feb 18;585(4):606-12. doi: 10.1016/j.febslet.2011.01.028. Epub 2011 Jan 26.
2
Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18010-5. doi: 10.1073/pnas.1009399107. Epub 2010 Oct 4.
3
Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine.
Gastroenterology. 2011 Mar;140(3):913-23. doi: 10.1053/j.gastro.2010.08.006. Epub 2010 Aug 18.
4
Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes.
Biochim Biophys Acta. 2010 Nov;1798(11):2048-57. doi: 10.1016/j.bbamem.2010.07.014. Epub 2010 Jul 22.
5
Claudin-2, a component of the tight junction, forms a paracellular water channel.
J Cell Sci. 2010 Jun 1;123(Pt 11):1913-21. doi: 10.1242/jcs.060665. Epub 2010 May 11.
6
Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):8011-6. doi: 10.1073/pnas.0912901107. Epub 2010 Apr 12.
7
Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions.
Mol Biol Cell. 2010 Apr 1;21(7):1200-13. doi: 10.1091/mbc.e09-08-0734. Epub 2010 Feb 17.
9
Two-path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance.
Biophys J. 2009 Oct 21;97(8):2202-11. doi: 10.1016/j.bpj.2009.08.003.
10
Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability.
Mol Biol Cell. 2009 Aug;20(16):3713-24. doi: 10.1091/mbc.e09-01-0080. Epub 2009 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验