Suppr超能文献

基于网络的社区驱动透明出版过程的统计。

Network-based statistics for a community driven transparent publication process.

机构信息

Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University Maastricht, Netherlands.

出版信息

Front Comput Neurosci. 2012 Mar 5;6:11. doi: 10.3389/fncom.2012.00011. eCollection 2011 Dec 27.

Abstract

The current publishing system with its merits and pitfalls is a mending topic for debate among scientists of various disciplines. Editors and reviewers alike, both face difficult decisions about the judgment of new scientific findings. Increasing interdisciplinary themes and rapidly changing dynamics in method development of each field make it difficult to be an "expert" with regard to all issues of a certain paper. Although unintended, it is likely that misunderstandings, human biases, and even outright mistakes can play an unfortunate role in final verdicts. We propose a new community-driven publication process that is based on network statistics to make the review, publication, and scientific evaluation process more transparent.

摘要

当前的出版系统有其优点和缺点,是各学科科学家争论的话题。编辑和审稿人都面临着关于新科学发现判断的艰难决策。不断增加的跨学科主题和每个领域方法发展的快速变化动态,使得很难成为某篇论文所有问题的“专家”。尽管并非有意,但误解、人为偏见甚至完全错误都可能在最终裁决中扮演不幸的角色。我们提出了一种新的基于网络统计的社区驱动的出版流程,旨在使审查、出版和科学评估过程更加透明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f3a/3293411/a4d35ae5f62d/fncom-06-00011-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验