Suppr超能文献

剪接体起源的选择压力。

Selective forces for the origin of spliceosomes.

机构信息

Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, 842 15, Bratislava, Slovakia.

出版信息

J Mol Evol. 2012 Apr;74(3-4):226-31. doi: 10.1007/s00239-012-9494-3. Epub 2012 Mar 11.

Abstract

It has been proposed that eukaryotic spliceosomes evolved from bacterial group II introns via constructive neutral changes. However, a more likely interpretation is that spliceosomes and group II introns share a common undefined RNA ancestor--a proto-spliceosome. Although, the constructive neutral evolution may have probably played some roles in the development of complexity including the evolution of modern spliceosomes, in fact, the origin, losses and the retention of spliceosomes can be explained straight-forwardly mainly by positive and negative selection: (1) proto-spliceosomes evolved in the RNA world as a mechanism to excise functional RNAs from an RNA genome and to join non-coding information (ancestral to exons) possibly designed to be degraded. (2) The complexity of proto-spliceosomes increased with the invention of protein synthesis in the RNP world and they were adopted for (a) the addition of translation signal to RNAs via trans-splicing, and for (b) the exon-shuffling such as to join together exons coding separate protein domains, to translate them as a single unit and thus to facilitate the molecular interaction of protein domains needed to be assembled to functional catalytic complexes. (3) Finally, the spliceosomes were adopted for cis-splicing of (mainly) non-coding information (contemporary introns) to yield translatable mRNAs. (4) Spliceosome-negative organisms (i.e., prokaryotes) have been selected in the DNA-protein world to save a lot of energy. (5) Spliceosome-positive organisms (i.e., eukaryotes) have been selected, because they have been completely spliceosome-dependent.

摘要

有人提出,真核剪接体是通过建设性的中性变化从细菌的 II 类内含子进化而来的。然而,更有可能的解释是,剪接体和 II 类内含子共享一个未定义的 RNA 祖先——原剪接体。尽管建设性的中性进化可能在包括现代剪接体进化在内的复杂性发展中发挥了一定作用,但实际上,剪接体的起源、丧失和保留可以通过正选择和负选择来简单地解释:(1)原剪接体在 RNA 世界中进化为一种从 RNA 基因组中切除功能 RNA 并连接非编码信息(祖先为外显子)的机制,这些信息可能被设计为降解。(2)随着 RNP 世界中蛋白质合成的发明,原剪接体的复杂性增加,它们被用于(a)通过反式剪接向 RNA 添加翻译信号,以及(b)外显子改组,例如将编码单独蛋白质结构域的外显子连接在一起,将它们作为一个单元进行翻译,从而促进需要组装成功能催化复合物的蛋白质结构域的分子相互作用。(3)最后,剪接体被用于(主要)非编码信息(当代内含子)的顺式剪接,以产生可翻译的 mRNA。(4)在 DNA-蛋白质世界中,选择了缺乏剪接体的生物(即原核生物)以节省大量能量。(5)选择了具有剪接体的生物(即真核生物),因为它们完全依赖剪接体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验