Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Jinan 250100, People's Republic of China.
J Comput Aided Mol Des. 2012 Mar;26(3):329-37. doi: 10.1007/s10822-012-9559-9. Epub 2012 Mar 16.
While N,N'-dialkylimidazolium ionic liquids (ILs) have been well-established as effective solvents for dissolution and processing of cellulose, the detailed mechanism at the molecular level still remains unclear. In this work, we present a combined quantum chemistry and molecular dynamics simulation study on how the ILs dissolve cellulose. On the basis of calculations on 1-butyl-3-methylimidazolium chloride, one of the most effective ILs dissolving cellulose, we further studied the molecular behavior of cellulose models (i.e. cellulose oligomers with degrees of polymerization n = 2, 4, and 6) in the IL, including the structural features and hydrogen bonding patterns. The collected data indicate that both chloride anions and imidazolium cations of the IL interact with the oligomer via hydrogen bonds. However, the anions occupy the first coordination shell of the oligomer, and the strength and number of hydrogen bonds and the interaction energy between anions and the oligomer are much larger than those between cations and the oligomer. It is observed that the intramolecular hydrogen bond in the oligomer is broken under the combined effect of anions and cations. The present results emphasize that the chloride anions play a critically important role and the imidazolium cations also present a remarkable contribution in the cellulose dissolution. This point of view is different from previous one that only underlines the importance of the chloride anions in the cellulose dissolution. The present results improve our understanding for the cellulose dissolution in imidazolium chloride ILs.
虽然 N,N'-二烷基咪唑鎓离子液体 (ILs) 已被广泛确立为溶解和加工纤维素的有效溶剂,但在分子水平上的详细机制仍不清楚。在这项工作中,我们进行了量子化学和分子动力学模拟的联合研究,以了解 ILs 如何溶解纤维素。在计算 1-丁基-3-甲基咪唑氯化物的基础上,我们进一步研究了纤维素模型(即聚合度为 n = 2、4 和 6 的纤维素低聚物)在 IL 中的分子行为,包括结构特征和氢键模式。收集的数据表明,IL 中的氯化物阴离子和咪唑鎓阳离子都通过氢键与低聚物相互作用。然而,阴离子占据低聚物的第一配体壳,阴离子与低聚物之间的氢键强度、数量和相互作用能都比阳离子与低聚物之间的氢键强度、数量和相互作用能大得多。观察到低聚物中的分子内氢键在阴离子和阳离子的共同作用下被破坏。目前的结果强调了氯化物阴离子的重要作用,咪唑鎓阳离子在纤维素溶解中也有显著贡献。这一观点与之前只强调氯化物阴离子在纤维素溶解中的重要性的观点不同。目前的结果提高了我们对在咪唑鎓氯化物 ILs 中纤维素溶解的理解。