Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
J Phys Chem B. 2018 Jan 11;122(1):258-266. doi: 10.1021/acs.jpcb.7b09525. Epub 2017 Dec 21.
The highly crystalline nature of cellulose results in poor processability and solubility, necessitating the search for solvents that can efficiently dissolve this material. Thus, ionic liquids (ILs) have recently been shown to be well suited for this purpose, although the corresponding dissolution mechanism has not been studied in detail. Herein, we adopt a molecular dynamics (MD) approach to study the dissolution of model cellulose crystal structures in imidazolium-based ILs and gain deep mechanistic insights, demonstrating that dissolution involves IL penetration-induced cleavage of hydrogen bonds between cellulose molecular chains. Moreover, we reveal that in ILs with high cellulose dissolving power (powerful solvents, such as 1-allyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride), the above molecular chains are peeled from the crystal phase and subsequently dispersed in the solvent, whereas no significant structural changes are observed in poor-dissolving-power solvents. Finally, we utilize MD trajectory analysis to show that the solubility of microcrystalline cellulose is well correlated with the number of intermolecular hydrogen bonds in cellulose crystals. The obtained results allow us to conclude that both anions and cations of high-dissolving-power ILs contribute to the stepwise breakage of hydrogen bonds between cellulose chains, whereas this breakage does not occur to a sufficient extent in poorly solubilizing ILs.
纤维素具有高度结晶性,导致其加工性能和溶解性能较差,因此需要寻找能够有效溶解纤维素的溶剂。最近的研究表明,离子液体(ILs)非常适合这一目的,尽管其相应的溶解机制尚未得到详细研究。在此,我们采用分子动力学(MD)方法研究了模型纤维素晶体结构在基于咪唑的 ILs 中的溶解过程,并深入了解了其溶解机制,证明溶解过程涉及 IL 渗透诱导纤维素分子链间氢键的断裂。此外,我们揭示了在具有高纤维素溶解能力的 ILs(溶解能力强的溶剂,如 1-烯丙基-3-甲基咪唑氯化物和 1-乙基-3-甲基咪唑氯化物)中,上述分子链从晶体相中剥落,并随后分散在溶剂中,而在溶解能力弱的溶剂中则没有观察到明显的结构变化。最后,我们利用 MD 轨迹分析表明,微晶纤维素的溶解度与纤维素晶体中分子间氢键的数量密切相关。所得结果表明,高溶解能力 ILs 的阴离子和阳离子都有助于纤维素链间氢键的逐步断裂,而在溶解能力差的 ILs 中,这种断裂没有充分发生。
J Phys Chem B. 2017-12-21
Phys Chem Chem Phys. 2018-8-8
Appl Microbiol Biotechnol. 2017-1
Phys Chem Chem Phys. 2015-7-21
Materials (Basel). 2024-7-13
Membranes (Basel). 2021-10-12
Polymers (Basel). 2021-8-29