Suppr超能文献

基于数据的药物作用和相互作用预测。

Data-driven prediction of drug effects and interactions.

机构信息

Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305, USA.

出版信息

Sci Transl Med. 2012 Mar 14;4(125):125ra31. doi: 10.1126/scitranslmed.3003377.

Abstract

Adverse drug events remain a leading cause of morbidity and mortality around the world. Many adverse events are not detected during clinical trials before a drug receives approval for use in the clinic. Fortunately, as part of postmarketing surveillance, regulatory agencies and other institutions maintain large collections of adverse event reports, and these databases present an opportunity to study drug effects from patient population data. However, confounding factors such as concomitant medications, patient demographics, patient medical histories, and reasons for prescribing a drug often are uncharacterized in spontaneous reporting systems, and these omissions can limit the use of quantitative signal detection methods used in the analysis of such data. Here, we present an adaptive data-driven approach for correcting these factors in cases for which the covariates are unknown or unmeasured and combine this approach with existing methods to improve analyses of drug effects using three test data sets. We also present a comprehensive database of drug effects (Offsides) and a database of drug-drug interaction side effects (Twosides). To demonstrate the biological use of these new resources, we used them to identify drug targets, predict drug indications, and discover drug class interactions. We then corroborated 47 (P < 0.0001) of the drug class interactions using an independent analysis of electronic medical records. Our analysis suggests that combined treatment with selective serotonin reuptake inhibitors and thiazides is associated with significantly increased incidence of prolonged QT intervals. We conclude that confounding effects from covariates in observational clinical data can be controlled in data analyses and thus improve the detection and prediction of adverse drug effects and interactions.

摘要

药物不良反应仍然是全球发病率和死亡率的主要原因。许多不良反应在药物获得临床使用批准之前的临床试验中并未被发现。幸运的是,作为上市后监测的一部分,监管机构和其他机构维护着大量的不良事件报告集,这些数据库为从患者人群数据研究药物效应提供了机会。然而,在自发报告系统中,混杂因素如伴随用药、患者人口统计学、患者病史以及开处方的原因通常未被描述,这些遗漏会限制在分析此类数据时使用定量信号检测方法。在这里,我们提出了一种自适应数据驱动的方法来纠正这些未知或未测量的协变量的影响,并将这种方法与现有的方法结合起来,使用三个测试数据集来改进药物效应的分析。我们还提出了一个药物效应的综合数据库(Offsides)和一个药物-药物相互作用副作用数据库(Twosides)。为了证明这些新资源的生物学用途,我们使用它们来识别药物靶点、预测药物适应证和发现药物类别相互作用。然后,我们使用电子病历的独立分析证实了 47 种(P < 0.0001)药物类别相互作用。我们的分析表明,选择性 5-羟色胺再摄取抑制剂和噻嗪类药物联合治疗与 QT 间期延长的发生率显著增加有关。我们的结论是,在观察性临床数据中,协变量的混杂效应可以在数据分析中得到控制,从而提高药物不良反应和相互作用的检测和预测能力。

相似文献

1
Data-driven prediction of drug effects and interactions.基于数据的药物作用和相互作用预测。
Sci Transl Med. 2012 Mar 14;4(125):125ra31. doi: 10.1126/scitranslmed.3003377.

引用本文的文献

4
The integration of machine learning into traditional Chinese medicine.机器学习与中医的融合。
J Pharm Anal. 2025 Aug;15(8):101157. doi: 10.1016/j.jpha.2024.101157. Epub 2024 Dec 4.

本文引用的文献

1
Systematic drug repositioning based on clinical side-effects.基于临床副作用的系统药物再定位。
PLoS One. 2011;6(12):e28025. doi: 10.1371/journal.pone.0028025. Epub 2011 Dec 21.
9
Drug interactions should be evaluated in patients.应评估患者的药物相互作用。
Clin Pharmacol Ther. 2010 Nov;88(5):585-7. doi: 10.1038/clpt.2010.213.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验