Garcia-Acero Pablo, Henarejos-Castillo Ismael, Sanz Francisco Jose, Sebastian-Leon Patricia, Parraga-Leo Antonio, Garcia-Velasco Juan Antonio, Diaz-Gimeno Patricia
IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1, 46026 Valencia, Spain.
Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain.
Pharmaceutics. 2025 Aug 6;17(8):1020. doi: 10.3390/pharmaceutics17081020.
Drug-drug interactions (DDIs) may occur when two or more drugs are taken together, leading to undesired side effects or potential synergistic effects. Most clinical effects of drug combinations have not been assessed in clinical trials. Therefore, predicting DDIs can provide better patient management, avoid drug combinations that can negatively affect patient care, and exploit potential synergistic combinations to improve current therapies in women's healthcare. A DDI prediction model was built to describe relevant drug combinations affecting reproductive treatments. Approved drug features (chemical structure of drugs, side effects, targets, enzymes, carriers and transporters, pathways, protein-protein interactions, and interaction profile fingerprints) were obtained. A unified predictive score revealed unknown DDIs between reproductive and commonly used drugs and their associated clinical effects on reproductive health. The performance of the prediction model was validated using known DDIs. This prediction model accurately predicted known interactions (AUROC = 0.9876) and identified 2991 new DDIs between 192 drugs used in different female reproductive conditions and other drugs used to treat unrelated conditions. These DDIs included 836 between drugs used for in vitro fertilization. Most new DDIs involved estradiol, acetaminophen, bupivacaine, risperidone, and follitropin. Follitropin, bupivacaine, and gonadorelin had the highest discovery rate (42%, 32%, and 25%, respectively). Some were expected to improve current therapies (n = 23), while others would cause harmful effects (n = 11). We also predicted twelve DDIs between oral contraceptives and HIV drugs that could compromise their efficacy. These results show the importance of DDI studies aimed at identifying those that might compromise or improve their efficacy, which could lead to personalizing female reproductive therapies.
当同时服用两种或更多药物时,可能会发生药物相互作用(DDIs),从而导致不良副作用或潜在的协同效应。大多数药物组合的临床效果尚未在临床试验中得到评估。因此,预测药物相互作用可以提供更好的患者管理,避免使用可能对患者护理产生负面影响的药物组合,并利用潜在的协同组合来改善当前女性医疗保健中的治疗方法。建立了一个药物相互作用预测模型来描述影响生殖治疗的相关药物组合。获取了已批准药物的特征(药物的化学结构、副作用、靶点、酶、载体和转运体、途径、蛋白质-蛋白质相互作用以及相互作用谱指纹)。一个统一的预测评分揭示了生殖药物与常用药物之间未知的药物相互作用及其对生殖健康的相关临床影响。使用已知的药物相互作用对预测模型的性能进行了验证。该预测模型准确地预测了已知的相互作用(曲线下面积 = 0.9876),并确定了192种用于不同女性生殖状况的药物与用于治疗无关疾病 的其他药物之间的2991种新的药物相互作用。这些药物相互作用包括用于体外受精的药物之间的836种相互作用。大多数新的药物相互作用涉及雌二醇、对乙酰氨基酚、布比卡因、利培酮和促卵泡素。促卵泡素、布比卡因和促性腺激素释放激素的发现率最高(分别为42%、32%和25%)。其中一些有望改善当前的治疗方法(n = 23),而另一些则会产生有害影响(n = 11)。我们还预测了口服避孕药和抗艾滋病毒药物之间的12种药物相互作用,这些相互作用可能会损害它们的疗效。这些结果表明了药物相互作用研究的重要性,旨在识别那些可能损害或改善其疗效的相互作用,这可能会导致女性生殖治疗的个性化。