Suppr超能文献

LSA-DDI:通过3D特征融合和对比交叉注意力学习立体化学感知的药物相互作用

LSA-DDI: Learning Stereochemistry-Aware Drug Interactions via 3D Feature Fusion and Contrastive Cross-Attention.

作者信息

Wang Shanshan, Yang Chen, Chen Lirong

机构信息

School of Economics and Management, Yan'an University, Yan'an 716000, China.

College of Computer Science, Inner Mongolia University, Hohhot 010021, China.

出版信息

Int J Mol Sci. 2025 Jul 16;26(14):6799. doi: 10.3390/ijms26146799.

Abstract

Accurate prediction of drug-drug interactions (DDIs) is essential for ensuring medication safety and optimizing combination-therapy strategies. However, existing DDI models face limitations in handling interactions related to stereochemistry and precisely locating drug interaction sites. These limitations reduce the prediction accuracy for conformation-dependent interactions and the interpretability of molecular mechanisms, potentially posing risks to clinical safety. To address these challenges, we introduce LSA-DDI, a Spatial-Contrastive-Attention-Based Drug-Drug Interaction framework. Our 3D feature extraction method captures the spatial structure of molecules through three features-coordinates, distances, and angles-and fuses them to enhance the model of molecular spatial structures. Concurrently, we design and implement a Dynamic Feature Exchange (DFE) mechanism that dynamically regulates the flow of information across modalities via an attention mechanism, achieving bidirectional enhancement and semantic alignment of 2D topological and 3D spatial structure features. Additionally, we incorporate a dynamic temperature-regulated multiscale contrastive learning framework that effectively aligns multiscale features and enhances the model's generalizability. Experiments conducted on public drug databases under both warm-start and cold-start scenarios demonstrated that LSA-DDI achieved competitive performance, with consistent improvements over existing methods.

摘要

准确预测药物相互作用(DDIs)对于确保用药安全和优化联合治疗策略至关重要。然而,现有的DDI模型在处理与立体化学相关的相互作用以及精确确定药物相互作用位点方面存在局限性。这些局限性降低了对构象依赖性相互作用的预测准确性以及分子机制的可解释性,可能对临床安全构成风险。为应对这些挑战,我们引入了LSA-DDI,一种基于空间对比注意力的药物-药物相互作用框架。我们的三维特征提取方法通过坐标、距离和角度这三个特征捕捉分子的空间结构,并将它们融合以增强分子空间结构模型。同时,我们设计并实现了一种动态特征交换(DFE)机制,该机制通过注意力机制动态调节跨模态的信息流,实现二维拓扑和三维空间结构特征的双向增强和语义对齐。此外,我们纳入了一个动态温度调节的多尺度对比学习框架,该框架有效地对齐多尺度特征并增强了模型的泛化能力。在热启动和冷启动场景下对公共药物数据库进行的实验表明,LSA-DDI取得了具有竞争力的性能,相对于现有方法有持续的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a8/12294978/36e29992c947/ijms-26-06799-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验