Suppr超能文献

延长去极化后电位(PDA)的历史及其在果蝇光转导基因剖析中的作用。

The history of the prolonged depolarizing afterpotential (PDA) and its role in genetic dissection of Drosophila phototransduction.

作者信息

Minke Baruch

机构信息

Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada, Faculty of Medicine and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University , Jerusalem , Israel.

出版信息

J Neurogenet. 2012 Jun;26(2):106-17. doi: 10.3109/01677063.2012.666299. Epub 2012 Mar 20.

Abstract

In invertebrate photoreceptors, the photopigment exhibits a long-lived and physiologically active photoproduct, called metarhodopsin (M). The long life of invertebrate M implies that under physiological conditions, M and the original pigment state rhodopsin, R, are in photoequilibrium. In many invertebrates, the absorption spectra of R and M states are different, allowing large photopigment conversion between R and M states. These net pigment molecules conversions between R and M are the basis of the prolonged depolarizing afterpotential (PDA) phenomenology, which is the main subject of this review. A large net conversion of R to M disrupts phototransduction termination at the photopigment level, which in turn results in sustained excitation long after the light is turned off. Throughout this period, the photoreceptors are partially desensitized and are insensitive (or less sensitive) to subsequent test lights. In Drosophila, the PDA tests the maximal capacity of the photoreceptor cell to maintain excitation for an extended period and is strictly dependent on the presence of high concentrations of rhodopsin and the transient receptor potential (TRP) channels. Therefore, it detects even minor defects in rhodopsin or TRP biogenesis and easily scores deficient replenishment of phototransduction components, which results in temporary desensitization of the phototransduction process. Indeed, the introduction and use of PDA to screen for phototransduction-defective Drosophila mutants by Pak and colleagues yielded a plethora of new and most interesting visual mutants. Remarkably, to this day, the PDA mutants that Pak and his colleagues isolated are the main source of mutants for analysis of the Drosophila visual system.

摘要

在无脊椎动物光感受器中,光色素呈现出一种寿命长且具有生理活性的光产物,称为变视紫红质(M)。无脊椎动物M的长寿命意味着在生理条件下,M与原始色素状态视紫红质(R)处于光平衡状态。在许多无脊椎动物中,R和M状态的吸收光谱不同,这使得R和M状态之间能够进行大量的光色素转换。R和M之间这些色素分子的净转换是延长去极化后电位(PDA)现象学的基础,这也是本综述的主要主题。R向M的大量净转换会破坏光色素水平的光转导终止,进而导致在光关闭后很长时间内持续激发。在整个这段时间里,光感受器会部分脱敏,并且对随后的测试光不敏感(或不太敏感)。在果蝇中,PDA测试光感受器细胞在较长时间内维持激发的最大能力,并且严格依赖于高浓度视紫红质和瞬时受体电位(TRP)通道的存在。因此,它能检测到视紫红质或TRP生物合成中即使很微小的缺陷,并能轻易地对光转导成分补充不足进行评分,这会导致光转导过程暂时脱敏。事实上,Pak及其同事引入并利用PDA来筛选光转导缺陷型果蝇突变体,产生了大量新的且非常有趣的视觉突变体。值得注意的是,直到今天,Pak及其同事分离出的PDA突变体仍然是分析果蝇视觉系统突变体的主要来源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验