Tung Chang-Shung, McMahon Benjamin H
Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
BMC Struct Biol. 2012 Mar 20;12:3. doi: 10.1186/1472-6807-12-3.
There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes.
We use a Motif Binding Geometries (MBG) approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA), and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs) to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints.
Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.
通过实验确定的蛋白质和/或核酸结构超过78,000种。这些结构中只有一小部分对应于蛋白质复合物的结构。虽然同源建模能够利用基于知识的侧链旋转异构体和主链基序的潜力来推断新蛋白质的结构,但不存在这样一种通用方法来将我们对蛋白质相互作用基序的理解扩展到新型蛋白质复合物。
我们使用一种基序结合几何(MBG)方法,从取自其他背景的同源蛋白质复合物数据库(如螺旋-转角-螺旋基序结合双链DNA)中推断蛋白质复合物的结构,并在生物学中一个更重要的调节复合物——磷酸饥饿条件下启动转录的RNA聚合酶复合物上证明了其效用。所建模的PhoB/RNAP/σ因子/DNA复合物在立体化学上是合理的,具有足够的界面溶剂排除表面积(SESA)以提供足够的结合强度,在转录调节方面具有物理意义,并且与各种已知的实验约束一致。
基于一个简单易懂的概念,即“折叠方式相似的蛋白质和蛋白质结构域可能以相似的方式相互作用”,已经开发出转录起始复合物中PhoB二聚体的结构模型。这种方法可以扩展以实现对其他生物分子复合物的结构建模和预测。正如单个蛋白质的模型能深入了解分子识别、催化机制和底物特异性一样,蛋白质复合物的模型将有助于理解细胞调节和信号传导的组合规则。