Suppr超能文献

来自 的σ因子结构域1.1的溶液结构已预先形成,用于与RNA聚合酶核心结合。 (注:原文中“from”后缺少具体内容,翻译时保留原文状态)

Solution structure of domain 1.1 of the σ factor from is preformed for binding to the RNA polymerase core.

作者信息

Zachrdla Milan, Padrta Petr, Rabatinová Alžbeta, Šanderová Hana, Barvík Ivan, Krásný Libor, Žídek Lukáš

机构信息

Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.

Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, The Czech Academy of Sciences, CZ-14220 Prague 4, Czech Republic.

出版信息

J Biol Chem. 2017 Jul 14;292(28):11610-11617. doi: 10.1074/jbc.M117.784074. Epub 2017 May 24.

Abstract

Bacterial RNA polymerase (RNAP) requires σ factors to recognize promoter sequences. Domain 1.1 of primary σ factors (σ1.1) prevents their binding to promoter DNA in the absence of RNAP, and when in complex with RNAP, it occupies the DNA-binding channel of RNAP. Currently, two 3D structures of σ1.1 are available: from in complex with RNAP and from solved free in solution. However, these two structures significantly differ, and it is unclear whether this difference is due to an altered conformation upon RNAP binding or to differences in intrinsic properties between the proteins from these two distantly related species. Here, we report the solution structure of σ1.1 from the Gram-positive bacterium We found that σ1.1 is highly compact because of additional stabilization not present in σ1.1 from the other two species and that it is more similar to σ1.1. Moreover, modeling studies suggested that σ1.1 requires minimal conformational changes for accommodating RNAP in the DNA channel, whereas σ1.1 must be rearranged to fit therein. Thus, the mesophilic species and share the same σ1.1 fold, whereas the fold of σ1.1 from the thermophile is distinctly different. Finally, we describe an intriguing similarity between σ1.1 and δ, an RNAP-associated protein in , bearing implications for the so-far unknown binding site of δ on RNAP. In conclusion, our results shed light on the conformational changes of σ1.1 required for its accommodation within bacterial RNAP.

摘要

细菌RNA聚合酶(RNAP)需要σ因子来识别启动子序列。主要σ因子的1.1结构域(σ1.1)可防止它们在没有RNAP的情况下与启动子DNA结合,并且当与RNAP形成复合物时,它占据RNAP的DNA结合通道。目前,有两种σ1.1的三维结构:一种是与RNAP形成复合物的结构,另一种是在溶液中游离状态下解析得到的结构。然而,这两种结构存在显著差异,尚不清楚这种差异是由于与RNAP结合后构象改变,还是由于来自这两个远缘物种的蛋白质内在特性的差异。在这里,我们报道了革兰氏阳性细菌[具体细菌名称未给出]的σ1.1的溶液结构。我们发现,[具体细菌名称未给出]的σ1.1高度紧凑,这是由于其他两个物种的σ1.1中不存在的额外稳定性,并且它与[另一种细菌的σ1.1]更相似。此外,建模研究表明,[具体细菌名称未给出]的σ1.1在DNA通道中容纳RNAP时需要最小的构象变化,而[另一种细菌的σ1.1]必须重新排列才能适合其中。因此,嗜温物种[具体细菌名称未给出]和[另一种细菌名称未给出]共享相同的σ1.1折叠,而嗜热菌[具体细菌名称未给出]的σ1.1折叠明显不同。最后,我们描述了σ1.1与δ之间一个有趣的相似性,δ是[具体细菌名称未给出]中一种与RNAP相关的蛋白质,这对δ在RNAP上迄今未知的结合位点具有启示意义。总之,我们的结果揭示了σ1.1在细菌RNAP中容纳所需的构象变化。

相似文献

引用本文的文献

5
Structural Analysis of Sigma Factors.西格玛因子的结构分析
Microorganisms. 2023 Apr 20;11(4):1077. doi: 10.3390/microorganisms11041077.
6
RNA polymerases from low G+C gram-positive bacteria.低 G+C 革兰氏阳性菌的 RNA 聚合酶。
Transcription. 2021 Aug;12(4):92-102. doi: 10.1080/21541264.2021.1964328. Epub 2021 Aug 17.
8
The Core and Holoenzyme Forms of RNA Polymerase from .从. 中提取的 RNA 聚合酶的核心酶和全酶形式。
J Bacteriol. 2019 Jan 28;201(4). doi: 10.1128/JB.00583-18. Print 2019 Feb 15.

本文引用的文献

5
Combined automated NOE assignment and structure calculation with CYANA.结合CYANA进行自动NOE归属和结构计算。
J Biomol NMR. 2015 Aug;62(4):453-71. doi: 10.1007/s10858-015-9924-9. Epub 2015 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验