Zachrdla Milan, Padrta Petr, Rabatinová Alžbeta, Šanderová Hana, Barvík Ivan, Krásný Libor, Žídek Lukáš
Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.
Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, The Czech Academy of Sciences, CZ-14220 Prague 4, Czech Republic.
J Biol Chem. 2017 Jul 14;292(28):11610-11617. doi: 10.1074/jbc.M117.784074. Epub 2017 May 24.
Bacterial RNA polymerase (RNAP) requires σ factors to recognize promoter sequences. Domain 1.1 of primary σ factors (σ1.1) prevents their binding to promoter DNA in the absence of RNAP, and when in complex with RNAP, it occupies the DNA-binding channel of RNAP. Currently, two 3D structures of σ1.1 are available: from in complex with RNAP and from solved free in solution. However, these two structures significantly differ, and it is unclear whether this difference is due to an altered conformation upon RNAP binding or to differences in intrinsic properties between the proteins from these two distantly related species. Here, we report the solution structure of σ1.1 from the Gram-positive bacterium We found that σ1.1 is highly compact because of additional stabilization not present in σ1.1 from the other two species and that it is more similar to σ1.1. Moreover, modeling studies suggested that σ1.1 requires minimal conformational changes for accommodating RNAP in the DNA channel, whereas σ1.1 must be rearranged to fit therein. Thus, the mesophilic species and share the same σ1.1 fold, whereas the fold of σ1.1 from the thermophile is distinctly different. Finally, we describe an intriguing similarity between σ1.1 and δ, an RNAP-associated protein in , bearing implications for the so-far unknown binding site of δ on RNAP. In conclusion, our results shed light on the conformational changes of σ1.1 required for its accommodation within bacterial RNAP.
细菌RNA聚合酶(RNAP)需要σ因子来识别启动子序列。主要σ因子的1.1结构域(σ1.1)可防止它们在没有RNAP的情况下与启动子DNA结合,并且当与RNAP形成复合物时,它占据RNAP的DNA结合通道。目前,有两种σ1.1的三维结构:一种是与RNAP形成复合物的结构,另一种是在溶液中游离状态下解析得到的结构。然而,这两种结构存在显著差异,尚不清楚这种差异是由于与RNAP结合后构象改变,还是由于来自这两个远缘物种的蛋白质内在特性的差异。在这里,我们报道了革兰氏阳性细菌[具体细菌名称未给出]的σ1.1的溶液结构。我们发现,[具体细菌名称未给出]的σ1.1高度紧凑,这是由于其他两个物种的σ1.1中不存在的额外稳定性,并且它与[另一种细菌的σ1.1]更相似。此外,建模研究表明,[具体细菌名称未给出]的σ1.1在DNA通道中容纳RNAP时需要最小的构象变化,而[另一种细菌的σ1.1]必须重新排列才能适合其中。因此,嗜温物种[具体细菌名称未给出]和[另一种细菌名称未给出]共享相同的σ1.1折叠,而嗜热菌[具体细菌名称未给出]的σ1.1折叠明显不同。最后,我们描述了σ1.1与δ之间一个有趣的相似性,δ是[具体细菌名称未给出]中一种与RNAP相关的蛋白质,这对δ在RNAP上迄今未知的结合位点具有启示意义。总之,我们的结果揭示了σ1.1在细菌RNAP中容纳所需的构象变化。