Department of Biology, Life Sciences Building Room 328, McMaster University, 1280 Main Street West Hamilton, ON L8S 4K1, Canada.
Syst Biol. 2012 Dec 1;61(6):913-26. doi: 10.1093/sysbio/sys039. Epub 2012 Mar 20.
The estimation of phylogenetic relationships is an essential component of understanding evolution. Accurate phylogenetic estimation is difficult, however, when internodes are short and old, when genealogical discordance is common due to large ancestral effective population sizes or ancestral population structure, and when homoplasy is prevalent. Inference of divergence times is also hampered by unknown and uneven rates of evolution, the incomplete fossil record, uncertainty in relationships between fossil and extant lineages, and uncertainty in the age of fossils. Ideally, these challenges can be overcome by developing large "phylogenomic" data sets and by analyzing them with methods that accommodate features of the evolutionary process, such as genealogical discordance, recurrent substitution, recombination, ancestral population structure, gene flow after speciation among sampled and unsampled taxa, and variation in evolutionary rates. In some phylogenetic problems, it is possible to use information that is independent of fossils, such as the geological record, to identify putative triggers for diversification whose associated estimated divergence times can then be compared a posteriori with estimated relationships and ages of fossils. The history of diversification of pipid frog genera Pipa, Hymenochirus, Silurana, and Xenopus, for instance, is characterized by many of these evolutionary and analytical challenges. These frogs diversified dozens of millions of years ago, they have a relatively rich fossil record, their distributions span continental plates with a well characterized geological record of ancient connectivity, and there is considerable disagreement across studies in estimated evolutionary relationships. We used high throughput sequencing and public databases to generate a large phylogenomic data set with which we estimated evolutionary relationships using multilocus coalescence methods. We collected sequence data from Pipa, Hymenochirus, Silurana, and Xenopus and the outgroup taxon Rhinophrynus dorsalis from coding sequence of 113 autosomal regions, averaging ∼300 bp in length (range: 102-1695 bp) and also a portion of the mitochondrial genome. Analysis of these data using multiple approaches recovers strong support for the ((Xenopus, Silurana)(Pipa, Hymenochirus)) topology, and geologically calibrated divergence time estimates that are consistent with estimated ages and phylogenetic affinities of many fossils. These results provide new insights into the biogeography and chronology of pipid diversification during the breakup of Gondwanaland and illustrate how phylogenomic data may be necessary to tackle tough problems in molecular systematics. [Coalescence; gene tree; high-throughout sequencing; lineage sorting; pipid; species tree; Xenopus.].
系统发育关系的估计是理解进化的一个重要组成部分。然而,当内节点较短且较老、由于祖先有效种群较大或祖先种群结构导致系统发育分歧普遍、以及同功现象普遍时,准确的系统发育估计是困难的。由于未知和不均匀的进化速度、不完全的化石记录、化石和现存谱系之间关系的不确定性以及化石年龄的不确定性,分歧时间的推断也受到阻碍。通过开发大型“系统基因组”数据集并使用适应进化过程特征的方法进行分析,例如系统发育分歧、反复替代、重组、祖先种群结构、取样和未取样分类群之间物种形成后的基因流以及进化速度的变化,可以克服这些挑战。在某些系统发育问题中,可以使用独立于化石的信息,例如地质记录,来识别多样化的假定触发因素,然后可以将相关的估计分歧时间与估计的化石关系和年龄进行后验比较。例如,pipid 蛙属 Pipa、Hymenochirus、Silurana 和 Xenopus 的多样化历史就具有许多这样的进化和分析挑战。这些青蛙在数千万年前就已经多样化了,它们有一个相对丰富的化石记录,它们的分布跨越了大陆板块,具有很好的地质连通性记录,并且在估计的进化关系方面,不同研究之间存在很大的分歧。我们使用高通量测序和公共数据库生成了一个大型系统基因组数据集,并用多基因座聚合法来估计进化关系。我们从 Pipa、Hymenochirus、Silurana 和 Xenopus 以及外群 Rhinophrynus dorsalis 收集了编码序列 113 个常染色体区域的序列数据,平均长度约为 300bp(范围:102-1695bp),还收集了部分线粒体基因组。使用多种方法对这些数据进行分析,强烈支持(( Xenopus、Silurana)(Pipa、Hymenochirus))拓扑结构,以及与许多化石的估计年龄和系统发育亲缘关系一致的地质校准分歧时间估计。这些结果为 Pipid 多样化在冈瓦纳大陆分裂期间的生物地理学和年代学提供了新的见解,并说明了系统基因组数据如何解决分子系统学中的棘手问题。[聚合法;基因树;高通量测序;谱系排序;pipid;种系树; Xenopus。]。