Suppr超能文献

合作诱导的拓扑复杂性:通往容错和赫布学习的一条充满希望的道路。

Cooperation-induced topological complexity: a promising road to fault tolerance and hebbian learning.

作者信息

Turalska Malgorzata, Geneston Elvis, West Bruce J, Allegrini Paolo, Grigolini Paolo

机构信息

Center for Non-linear Science, Department of Physics, University of North Texas Denton, TX, USA.

出版信息

Front Physiol. 2012 Mar 16;3:52. doi: 10.3389/fphys.2012.00052. eCollection 2012.

Abstract

According to an increasing number of researchers intelligence emerges from criticality as a consequence of locality breakdown and long-range correlation, well known properties of phase transition processes. We study a model of interacting units, as an idealization of real cooperative systems such as the brain or a flock of birds, for the purpose of discussing the emergence of long-range correlation from the coupling of any unit with its nearest neighbors. We focus on the critical condition that has been recently shown to maximize information transport and we study the topological structure of the network of dynamically linked nodes. Although the topology of this network depends on the arbitrary choice of correlation threshold, namely the correlation intensity selected to establish a link between two nodes; the numerical calculations of this paper afford some important indications on the dynamically induced topology. The first important property is the emergence of a perception length as large as the flock size, thanks to some nodes with a large number of links, thus playing the leadership role. All the units are equivalent and leadership moves in time from one to another set of nodes, thereby insuring fault tolerance. Then we focus on the correlation threshold generating a scale-free topology with power index ν ≈ 1 and we find that if this topological structure is selected to establish consensus through the linked nodes, the control parameter necessary to generate criticality is close to the critical value corresponding to the all-to-all coupling condition. We find that criticality in this case generates also a third state, corresponding to a total lack of consensus. However, we make a numerical analysis of the dynamically induced network, and we find that it consists of two almost independent structures, each of which is equivalent to a network in the all-to-all coupling condition. This observation confirms that cooperation makes the system evolve toward favoring consensus topological structures. We argue that these results are compatible with both Hebbian learning and fault tolerance.

摘要

越来越多的研究人员认为,智能源于临界状态,这是局部性破坏和长程关联的结果,而这两者都是相变过程的著名特性。我们研究了一个相互作用单元的模型,将其作为大脑或鸟群等真实协作系统的理想化模型,目的是讨论长程关联如何从任何单元与其最近邻的耦合中产生。我们关注最近被证明能使信息传输最大化的临界条件,并研究动态链接节点网络的拓扑结构。尽管这个网络的拓扑结构取决于相关阈值的任意选择,即用于在两个节点之间建立链接的相关强度;但本文的数值计算为动态诱导拓扑提供了一些重要线索。第一个重要特性是出现了与鸟群大小一样大的感知长度,这得益于一些具有大量链接的节点,从而发挥了领导作用。所有单元都是等效的,领导权会随着时间从一组节点转移到另一组节点,从而确保容错性。然后我们关注产生幂指数ν≈1的无标度拓扑的相关阈值,并且发现如果选择这种拓扑结构通过链接节点达成共识,那么产生临界状态所需的控制参数接近对应全对全耦合条件的临界值。我们发现,在这种情况下,临界状态还会产生第三种状态,对应于完全缺乏共识。然而,我们对动态诱导网络进行了数值分析,发现它由两个几乎独立的结构组成,每个结构都等效于全对全耦合条件下的网络。这一观察结果证实,合作使系统朝着有利于达成共识的拓扑结构发展。我们认为这些结果与赫布学习和容错性都兼容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c43/3305924/fa615d5ac4ed/fphys-03-00052-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验