Suppr超能文献

DRLiPS:一种使用机器学习预测可成药RNA-小分子结合口袋的新方法。

DRLiPS: a novel method for prediction of druggable RNA-small molecule binding pockets using machine learning.

作者信息

Krishnan Sowmya Ramaswamy, Roy Arijit, Wong Limsoon, Gromiha M Michael

机构信息

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.

TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India.

出版信息

Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf239.

Abstract

Ribonucleic Acid (RNA) is the central conduit for information transfer in the cell. Identifying potential RNA targets in disease conditions is a challenging task, given the vast repertoire of functional non-coding RNAs in a human cell. A potential druggable target must satisfy several criteria, including disease association, cellular accessibility, binding pockets for drug-like molecules, and minimal cross-reactivity. While several methods exist for prediction of druggable proteins, they cannot be repurposed for RNAs due to fundamental differences in their binding modality. Taking all these constraints into account, a new structure-based model, Druggable RNA-Ligand binding Pocket Selector (DRLiPS), is developed here to predict binding site-level druggability of any given RNA target. A novel strategy for sampling negative binding sites in RNA structures using three parallel approaches is demonstrated here to improve model specificity: backbone motif search, exhaustive pocket prediction, and blind docking. An external blind test dataset has also been curated to showcase the model's generalizability to both experimental and modelled apo state RNA structures. DRLiPS has achieved an F1-score of 0.70, precision of 0.61, specificity of 0.89, and recall of 0.73 on this external test dataset, outperforming two existing methods, DrugPred_RNA and RNACavityMiner. Further analysis indicates that the features selected for model-building generalize well to both apo and holo states with a backbone RMSD tolerance of 3 Å. It can also predict the effect of binding site single point mutations on druggability, which can aid in optimizing synthetic RNA aptamers for small molecule recognition. The DRLiPS model is freely accessible at https://web.iitm.ac.in/bioinfo2/DRLiPS/.

摘要

核糖核酸(RNA)是细胞中信息传递的核心渠道。鉴于人类细胞中功能性非编码RNA的种类繁多,在疾病状态下识别潜在的RNA靶点是一项具有挑战性的任务。一个潜在的可成药靶点必须满足几个标准,包括与疾病的关联性、细胞可及性、类药物分子的结合口袋以及最小的交叉反应性。虽然存在几种预测可成药蛋白质的方法,但由于它们结合方式的根本差异,这些方法不能用于RNA。考虑到所有这些限制因素,本文开发了一种新的基于结构的模型——可成药RNA-配体结合口袋选择器(DRLiPS),以预测任何给定RNA靶点的结合位点水平的可成药性。本文展示了一种使用三种并行方法对RNA结构中的负性结合位点进行采样的新策略,以提高模型的特异性:主链基序搜索、详尽的口袋预测和盲对接。还精心策划了一个外部盲测数据集,以展示该模型对实验性和建模的无配体状态RNA结构的通用性。在这个外部测试数据集上,DRLiPS的F1分数为0.70,精确率为0.61,特异性为0.89,召回率为0.73,优于两种现有方法DrugPred_RNA和RNACavityMiner。进一步分析表明,为模型构建选择的特征在主链均方根偏差容限为3 Å的情况下,对无配体和有配体状态都具有良好的通用性。它还可以预测结合位点单点突变对可成药性的影响,这有助于优化用于小分子识别的合成RNA适配体。DRLiPS模型可在https://web.iitm.ac.in/bioinfo2/DRLiPS/上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ae8/11963762/fec2aa90bf96/gkaf239figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验