Otto-von-Guericke Universität Magdeburg, Institute for Automation Engineering, Systems Theory and Automatic Control Laboratory, Magdeburg, Germany.
Bioinformatics. 2012 May 1;28(9):1290-1. doi: 10.1093/bioinformatics/bts137. Epub 2012 Mar 25.
Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if-then observations. ADMIT (Analysis, Design and Model Invalidation Toolbox) is a MatLab(TM)-based tool for guaranteed model invalidation, state and parameter estimation. The toolbox allows the integration of quantitative measurement data, a priori knowledge of parameters and states, and qualitative information on the dynamic or steady-state behavior. A constraint satisfaction problem is automatically generated and algorithms are implemented for solving the desired estimation, invalidation or analysis tasks. The implemented methods built on convex relaxation and optimization and therefore provide guaranteed estimation results and certificates for invalidity.
ADMIT, tutorials and illustrative examples are available free of charge for non-commercial use at http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/
在生物化学网络中,通常存在以不同数学模型形式存在的竞争假设,这些模型具有未知参数。考虑到可用的实验数据,我们希望拒绝与数据不一致的模型假设,或者估计未知参数。然而,这些任务很复杂,因为实验数据通常是稀疏的、不确定的,并且通常仅以定性的“如果-那么”观察的形式提供。ADMIT(分析、设计和模型失效工具箱)是一个基于 MatLab(TM)的工具,用于保证模型失效、状态和参数估计。该工具箱允许整合定量测量数据、参数和状态的先验知识,以及关于动态或稳态行为的定性信息。自动生成约束满足问题,并实现算法来解决所需的估计、失效或分析任务。所实现的方法基于凸松弛和优化,因此为失效提供了有保证的估计结果和证明。
ADMIT、教程和说明性示例可在非商业用途免费获得,网址为 http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/